o
    ZŽh‡  ã                   @   sv   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
 e¡ZG dd	„ d	eƒZG d
d„ deƒZd	dgZdS )zSqueezeBERT model configurationé    )ÚOrderedDict)ÚMappingé   )ÚPretrainedConfig)Ú
OnnxConfig)Úloggingc                       sN   e Zd ZdZdZ											
										d‡ fdd„	Z‡  ZS )ÚSqueezeBertConfigaà  
    This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
    SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
    [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SqueezeBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):

        pad_token_id (`int`, *optional*, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (`int`, *optional*, defaults to 768):
            The dimension of the word embedding vectors.

        q_groups (`int`, *optional*, defaults to 4):
            The number of groups in Q layer.
        k_groups (`int`, *optional*, defaults to 4):
            The number of groups in K layer.
        v_groups (`int`, *optional*, defaults to 4):
            The number of groups in V layer.
        post_attention_groups (`int`, *optional*, defaults to 1):
            The number of groups in the first feed forward network layer.
        intermediate_groups (`int`, *optional*, defaults to 4):
            The number of groups in the second feed forward network layer.
        output_groups (`int`, *optional*, defaults to 4):
            The number of groups in the third feed forward network layer.

    Examples:

    ```python
    >>> from transformers import SqueezeBertConfig, SqueezeBertModel

    >>> # Initializing a SqueezeBERT configuration
    >>> configuration = SqueezeBertConfig()

    >>> # Initializing a model (with random weights) from the configuration above
    >>> model = SqueezeBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    Zsqueezeberté:w  é   é   é   Úgeluçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=r   é   é   c                    sŒ   t ƒ jdd|i|¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )NÚpad_token_id© )ÚsuperÚ__init__Ú
vocab_sizeÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚ
hidden_actÚintermediate_sizeÚhidden_dropout_probÚattention_probs_dropout_probÚmax_position_embeddingsÚtype_vocab_sizeÚinitializer_rangeÚlayer_norm_epsÚembedding_sizeÚq_groupsÚk_groupsÚv_groupsÚpost_attention_groupsÚintermediate_groupsÚoutput_groups)Úselfr   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r%   r&   r'   r(   r)   r*   r+   Úkwargs©Ú	__class__r   úh/var/www/auris/lib/python3.10/site-packages/transformers/models/squeezebert/configuration_squeezebert.pyr   g   s(   
zSqueezeBertConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   r   r   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r.   r0   r      s0    Hër   c                   @   s.   e Zd Zedeeeeef f fdd„ƒZdS )ÚSqueezeBertOnnxConfigÚreturnc                 C   s<   | j dkrddddœ}ndddœ}td|fd|fd	|fgƒS )
Nzmultiple-choiceÚbatchÚchoiceÚsequence)r   r   r   )r   r   Z	input_idsZattention_maskZtoken_type_ids)Útaskr   )r,   Zdynamic_axisr   r   r0   Úinputs˜   s   

ýÿzSqueezeBertOnnxConfig.inputsN)r1   r2   r3   Úpropertyr   ÚstrÚintr<   r   r   r   r0   r6   —   s    $r6   N)r4   Úcollectionsr   Útypingr   Zconfiguration_utilsr   Zonnxr   Úutilsr   Z
get_loggerr1   Úloggerr   r6   Ú__all__r   r   r   r0   Ú<module>   s   
{