o
    Zh/                     @   s   d Z ddlmZmZmZmZ ddlmZmZm	Z	 ddl
mZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZ ee Z!e rTddl"Z"G d	d
 d
eZ#d
gZ$dS )z!Image processor class for SigLIP.    )DictListOptionalUnion   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_flat_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingNc                       sb  e Zd ZdZdgZddejddddddf	dedee	e
ef  ded	ed
eeef dedeeeee f  deeeee f  dee ddf fddZe dddddddddejddfdedee dee	e
ef  ded	ee d
ee dee deeeee f  deeeee f  deee
ef  dee deee
ef  dee dejjfddZ  ZS )SiglipImageProcessora  
    Constructs a SigLIP image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
            `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTNgp?	do_resizesizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc
                    s   t  jdi |
 |d ur|nddd}|d ur|nt}|d ur"|nt}|| _|| _|| _|| _|| _|| _	|| _
|| _|	| _d S )N   )heightwidth )super__init__r   r   r   r   r    r!   r"   r#   r$   r%   r&   )selfr   r   r    r!   r"   r#   r$   r%   r&   kwargs	__class__r+   a/var/www/auris/lib/python3.10/site-packages/transformers/models/siglip/image_processing_siglip.pyr-   R   s   
zSiglipImageProcessor.__init__imagesreturn_tensorsdata_formatinput_data_formatc              
      s  |dur|nj }|dur|nj}t|ddd}durnj|dur(|nj}dur1nj|dur:|nj}durCnjdurLnj|durU|nj	}t
|}t|sdtdt||||d |rydd |D }d	d |D }|rt|d
 rtd du rt|d
 |r|d |d fdd|D }|rfdd|D }|rɇfdd|D } fdd|D }d|i}t||
dS )a:  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
        Nr   F)
param_nameZdefault_to_squarezkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r!   r"   r#   r$   r%   r   r   r    c                 S      g | ]}t |qS r+   )r
   .0imager+   r+   r2   
<listcomp>       z3SiglipImageProcessor.preprocess.<locals>.<listcomp>c                 S   r8   r+   )r   r9   r+   r+   r2   r<      r=   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.r)   r*   c                    s    g | ]}t | fd qS ))r;   r   r    r6   )r   r9   )r)   r6   r    r*   r+   r2   r<      s    c                    s   g | ]
}j | d qS ))r;   scaler6   )Zrescaler9   )r6   r"   r.   r+   r2   r<      s    c                    s   g | ]}j | d qS ))r;   meanZstdr6   )	normalizer9   )r$   r%   r6   r.   r+   r2   r<      s    c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   r9   )r5   r6   r+   r2   r<      s    r   )dataZtensor_type)r   r   r	   r    r!   r"   r#   r$   r%   r&   r   r   
ValueErrorr   r   loggerZwarning_oncer   r   )r.   r3   r   r   r    r!   r"   r#   r$   r%   r4   r5   r6   r&   rA   r+   )	r5   r)   r$   r%   r6   r    r"   r.   r*   r2   
preprocessn   sh   ?
zSiglipImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBICUBICboolr   r   strintr   floatr   r-   r   r   ZFIRSTr   r   PILZImagerD   __classcell__r+   r+   r0   r2   r   0   s    
	
	
r   )%rH   typingr   r   r   r   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   Z
get_loggerrE   rC   rM   r   __all__r+   r+   r+   r2   <module>   s   4
 
E