o
    Zh5-                     @   s@   d Z ddlmZ ddlmZ eeZG dd deZdgZ	dS )zPhi-3 model configuration   )PretrainedConfig)loggingc                       s   e Zd ZdZdZdgZdddddZdgdgfd	d
gd	gfd	gd	gfdZ																							d" fdd	Zdd Z	d d! Z
  ZS )#
Phi3Configa  
    This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32064):
            Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Phi3Model`].
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            Dropout probability for mlp outputs.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        original_max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model was trained with. This is used to determine the size of the
            original RoPE embeddings when using long scaling.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon value used for the RMSNorm.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
            contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
            the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
            divided by the number of attention heads divided by 2.
        partial_rotary_factor (`float`, *optional*, defaults to 1.0):
            Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 32000):
            The id of the "end-of-sequence" token.
        pad_token_id (`int`, *optional*, defaults to 32000):
            The id of the padding token.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If `None`, no sliding window is applied.

    Example:

    ```python
    >>> from transformers import Phi3Model, Phi3Config

    >>> # Initializing a Phi-3 style configuration
    >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")

    >>> # Initializing a model from the configuration
    >>> model = Phi3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zphi3Zpast_key_valuesZcolwise_repZrowwise_rep)zlayers.*.self_attn.qkv_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnorm@}             N        silu   {Gz?h㈵>TF     @      ?    }  c                    s   || _ || _|| _|| _|| _|d u r|}|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|   |   || _t jd||||d| d S )N)bos_token_ideos_token_idpad_token_idtie_word_embeddings )
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headsresid_pdrop
embd_pdropattention_dropout
hidden_actmax_position_embeddings original_max_position_embeddingsinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingpartial_rotary_factor_rope_scaling_adjustment_rope_scaling_validationsliding_windowsuper__init__)selfr   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r   r&   r'   r(   r   r   r   r+   kwargs	__class__r   Z/var/www/auris/lib/python3.10/site-packages/transformers/models/phi3/configuration_phi3.pyr-   |   s>   
zPhi3Config.__init__c                 C   sB   | j du rdS | j dd}|dur|dv rd| j d< dS dS dS )zc
        Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
        Ntype)Zsuyarnlongrope)r'   get)r.   rope_scaling_typer   r   r2   r)      s   
z#Phi3Config._rope_scaling_adjustmentc                 C   sF  | j du rdS t| j trt| j dkrtd| j  | j dd}| j dd}| j dd}|du s9|dvr@td| t|trNtd	d
 |D sUtd| t| j	| j
 | j }t||d ksvtd|d  dt| t|trtdd
 |D std| t||d kstd|d  dt| dS )z<
        Validate the `rope_scaling` configuration.
        Nr   ze`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, got r3   Zshort_factorZlong_factor)r5   z=`rope_scaling`'s type field must be one of ['longrope'], got c                 s       | ]
}t |ttfV  qd S N
isinstanceintfloat.0xr   r   r2   	<genexpr>       z6Phi3Config._rope_scaling_validation.<locals>.<genexpr>zC`rope_scaling`'s short_factor field must be a list of numbers, got    z5`rope_scaling`'s short_factor field must have length z, got c                 s   r8   r9   r:   r>   r   r   r2   rA      rB   zB`rope_scaling`'s long_factor field must be a list of numbers, got z4`rope_scaling`'s long_factor field must have length )r'   r;   dictlen
ValueErrorr6   listallr<   r   r   r(   )r.   r7   Zrope_scaling_short_factorZrope_scaling_long_factorZrotary_ndimsr   r   r2   r*      sJ   
z#Phi3Config._rope_scaling_validation)r   r   r   r   r   Nr	   r	   r	   r
   r   r   r   r   TFr   Nr   r   r   r   N)__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr-   r)   r*   __classcell__r   r   r0   r2   r      sN    T

=r   N)
rL   Zconfiguration_utilsr   utilsr   Z
get_loggerrI   loggerr   __all__r   r   r   r2   <module>   s   
 
X