o
    ZhD                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZm Z m!Z! dd	l"m#Z# e  r[ddl$Z$e!%e&Z'e#d
dG dd de	Z(dgZ)dS )z$Image processor class for Perceiver.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)center_cropresizeto_channel_dimension_format)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availablelogging)requires)Zvision)backendsc                !       s   e Zd ZdZdgZddddejdddddf
dedee	e
ef  ded	ee	e
ef  d
ededeeef dedeeeee f  deeeee f  ddf fddZ			ddejde	e
ef d	ee deee
ef  deee
ef  dejfddZejddfdejd	e	e
ef d
edeee
ef  deee
ef  dejfddZe dddddddddddejdfdedee dee	e
ef  dee d	ee	e
ef  d
edee dee dee deeeee f  deeeee f  deee
ef  dedeee
ef  dejjfddZ  ZS )PerceiverImageProcessora/
  
    Constructs a Perceiver image processor.

    Args:
        do_center_crop (`bool`, `optional`, defaults to `True`):
            Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the
            image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop`
            parameter in the `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
            Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the
            `preprocess` method.
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize`
            parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
            Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
            in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
            in the `preprocess` method.
        do_normalize:
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?do_center_crop	crop_size	do_resizesizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stdreturnc                    s   t  jdi | |d ur|nddd}t|dd}|d ur |nddd}t|}|| _|| _|| _|| _|| _|| _|| _	|| _
|	d urG|	nt| _|
d urS|
| _d S t| _d S )N   )heightwidthr"   
param_name    )super__init__r	   r!   r"   r#   r$   r%   r&   r'   r(   r   r)   r   r*   )selfr!   r"   r#   r$   r%   r&   r'   r(   r)   r*   kwargs	__class__r2   g/var/www/auris/lib/python3.10/site-packages/transformers/models/perceiver/image_processing_perceiver.pyr4   X   s   z PerceiverImageProcessor.__init__imagedata_formatinput_data_formatc                 K   s   |du r| j n|}t|}t|dd}t||d\}}t||}	|d |d  |	 }
|d |d  |	 }t|f|
|f||d|S )a  
        Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] *
        min_dim)`. Where `min_dim = min(size["height"], size["width"])`.

        If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then
        center cropped.

        Args:
            image (`np.ndarray`):
                Image to center crop.
            crop_size (`Dict[str, int]`):
                Desired output size after applying the center crop.
            size (`Dict[str, int]`, *optional*):
                Size of the image after resizing. If not provided, the self.size attribute will be used.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Nr"   r/   )Zchannel_dimr-   r.   )r$   r;   r<   )r$   r	   r   minr
   )r5   r:   r"   r$   r;   r<   r6   r-   r.   Zmin_dimZcropped_heightZcropped_widthr2   r2   r9   r
   w   s    
z#PerceiverImageProcessor.center_cropc                 K   sT   t |}d|vsd|vrtd|  |d |d f}t|f||||d|S )a  
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        r-   r.   zFThe `size` dictionary must contain the keys `height` and `width`. Got )r$   r%   r;   r<   )r	   
ValueErrorkeysr   )r5   r:   r$   r%   r;   r<   r6   Zoutput_sizer2   r2   r9   r      s   #zPerceiverImageProcessor.resizeimagesreturn_tensorsc                    s  |dur|nj } dur nj t dd |dur|nj}dur'njtdur4nj|dur=|nj}durFnj|	durO|	nj}	durXnj	duranj
t|}t|sptdt||	| |d
 dd |D }|rt|d rtd	 du rt|d |r fd
d|D }|rfdd|D }|rŇfdd|D }|	rӇfdd|D }fdd|D }d|i}t||dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image to `crop_size`.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Desired output size after applying the center crop.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr"   r/   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r&   r'   r(   r)   r*   r!   r"   r#   r$   r%   c                 S   s   g | ]}t |qS r2   )r   .0r:   r2   r2   r9   
<listcomp>6  s    z6PerceiverImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                    s   g | ]}j | d qS ))r$   r<   )r
   rB   )r"   r<   r5   r$   r2   r9   rD   C  s    c                    s   g | ]}j | d qS ))r:   r$   r%   r<   )r   rB   )r<   r%   r5   r$   r2   r9   rD   H      c                    s   g | ]
}j | d qS ))r:   scaler<   )ZrescalerB   )r<   r'   r5   r2   r9   rD   N  s    c                    s   g | ]}j | d qS ))r:   meanZstdr<   )	normalizerB   )r)   r*   r<   r5   r2   r9   rD   T  rE   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   rB   )r;   r<   r2   r9   rD   Y  s    r    )dataZtensor_type)r!   r"   r	   r#   r$   r%   r&   r'   r(   r)   r*   r   r   r>   r   r   loggerZwarning_oncer   r   )r5   r@   r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   rA   r;   r<   rI   r2   )	r"   r;   r)   r*   r<   r%   r'   r5   r$   r9   
preprocess   sr   @z"PerceiverImageProcessor.preprocess)NNN)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBICUBICboolr   r   strintr   floatr   r4   npZndarrayr   r
   r   r   ZFIRSTr   r   PILZImagerK   __classcell__r2   r2   r7   r9   r   0   s    $
	
#

1

0	
r   )*rO   typingr   r   r   r   numpyrT   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   Zutils.import_utilsr   rU   Z
get_loggerrL   rJ   r   __all__r2   r2   r2   r9   <module>   s    8
  
2