o
    Zh%U                     @   s   d Z ddlmZmZmZmZmZ ddlZddl	m
Z
mZmZ ddlmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZ ddlmZmZmZm Z m!Z!m"Z" dd	l#m$Z$ e! r]ddl%Z%e rdddl&Z&e"'e(Z)e$d
dG dd de
Z*dgZ+dS )z$Image processor class for MobileViT.    )DictListOptionalTupleUnionN   )BaseImageProcessorBatchFeatureget_size_dict)flip_channel_orderget_resize_output_image_sizeresizeto_channel_dimension_format)	ChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_torch_availableis_torch_tensoris_vision_availablelogging)requires)Zvision)backendsc                       s>  e Zd ZdZdgZddejdddddfdedee	e
ef  ded	ed
eeef dedee	e
ef  deddf fddZejddfdejde	e
ef dedeee
ef  deee
ef  dejfddZ		d)dejdeee
ef  deee
ef  dejfddZd* fdd	Z					d+deded	edededee	e
ef  ded
ee dee	e
ef  deee
ef  fddZ										d,dedee dee	e
ef  ded	ee d
ee dee dee	e
ef  dee deee
ef  deee
ef  dejfddZ					d+dedee dee	e
ef  dee dee	e
ef  deee
ef  dejfdd Ze ddddddddddejdfd!ed"ee dee dee	e
ef  ded	ee d
ee dee dee	e
ef  dee d#eee
ef  dedeee
ef  dejjfd$d%Zd*d&eee   fd'd(Z!  Z"S )-MobileViTImageProcessora$  
    Constructs a MobileViT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
            Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the
            `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
            in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
            image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in
            the `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
            Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by
            the `crop_size` parameter in the `preprocess` method.
        do_flip_channel_order (`bool`, *optional*, defaults to `True`):
            Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
            parameter in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizeresample
do_rescalerescale_factordo_center_crop	crop_sizedo_flip_channel_orderreturnc	           
         s   t  jd	i |	 |d ur|nddi}t|dd}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
d S )
Nshortest_edge   Fdefault_to_square   )heightwidthr(   
param_name )super__init__r
   r"   r#   r$   r%   r&   r'   r(   r)   )
selfr"   r#   r$   r%   r&   r'   r(   r)   kwargs	__class__r4   g/var/www/auris/lib/python3.10/site-packages/transformers/models/mobilevit/image_processing_mobilevit.pyr6   Z   s   
z MobileViTImageProcessor.__init__imagedata_formatinput_data_formatc           	      K   sn   d}d|v r|d }d}nd|v rd|v r|d |d f}nt dt||||d}t|f||||d|S )	a[  
        Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
        resized to keep the input aspect ratio.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Tr+   Fr0   r1   zASize must contain either 'shortest_edge' or 'height' and 'width'.)r#   r.   r>   )r#   r$   r=   r>   )
ValueErrorr   r   )	r7   r<   r#   r$   r=   r>   r8   r.   Zoutput_sizer4   r4   r;   r   v   s.   zMobileViTImageProcessor.resizec                 C   s   t |||dS )a  
        Flip the color channels from RGB to BGR or vice versa.

        Args:
            image (`np.ndarray`):
                The image, represented as a numpy array.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        )r=   r>   )r   )r7   r<   r=   r>   r4   r4   r;   r      s   z*MobileViTImageProcessor.flip_channel_orderc                    s   t  j|fd|i|S )z
        Preprocesses a batch of images and optionally segmentation maps.

        Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
        passed in as positional arguments.
        segmentation_maps)r5   __call__)r7   imagesr@   r8   r9   r4   r;   rA      s   z MobileViTImageProcessor.__call__c                 C   sT   |r| j ||||
d}|r| j|||
d}|r| j||	|
d}|r(| j||
d}|S )N)r<   r#   r$   r>   )r<   scaler>   )r<   r#   r>   )r>   )r   ZrescaleZcenter_cropr   )r7   r<   r"   r%   r'   r)   r#   r$   r&   r(   r>   r4   r4   r;   _preprocess   s   z#MobileViTImageProcessor._preprocessc                 C   s^   t |}|rt|rtd |du rt|}| j|||||||||	|d
}t||
|d}|S )zPreprocesses a single image.zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.N)
r<   r"   r#   r$   r%   r&   r'   r(   r)   r>   )Zinput_channel_dim)r   r   loggerZwarning_oncer   rD   r   )r7   r<   r"   r#   r$   r%   r&   r'   r(   r)   r=   r>   r4   r4   r;   _preprocess_image   s*   z)MobileViTImageProcessor._preprocess_imagesegmentation_mapc                 C   sz   t |}|jdkrd}|d }tj}nd}|du rt|dd}| j|||tjd||d|d	}|r5|d	}|	t
j}|S )
zPreprocesses a single mask.   T)N.FN   )Znum_channels)	r<   r"   r#   r$   r%   r'   r(   r)   r>   r   )r   ndimr   FIRSTr   rD   r   ZNEARESTZsqueezeZastypenpZint64)r7   rG   r"   r#   r'   r(   r>   Zadded_channel_dimr4   r4   r;   _preprocess_mask  s.   


z(MobileViTImageProcessor._preprocess_maskrB   r@   return_tensorsc                    sp  durn	j durn	jdurn	jdur!n	jdur*n	jdur3n	j
dur<
n	j
t
dd
 durK n	j t dd t	|}|durbt	|dd}t	|}t
|sntd|durzt
|sztd	t 
d
  	
fdd|D }d|i}|dur 	
fdd|D }||d< t||dS )aj  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            segmentation_maps (`ImageInput`, *optional*):
                Segmentation map to preprocess.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image by rescale factor.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the center crop if `do_center_crop` is set to `True`.
            do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
                Whether to flip the channel order of the image.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr-   r(   r2   rH   )Zexpected_ndimszkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.zvInvalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r%   r&   r'   r(   r"   r#   r$   c                    s,   g | ]}	j |
 d qS ))r<   r"   r#   r$   r%   r&   r'   r(   r)   r=   r>   )rF   ).0Zimgr(   r=   r'   r)   r%   r"   r>   r$   r&   r7   r#   r4   r;   
<listcomp>  s     z6MobileViTImageProcessor.preprocess.<locals>.<listcomp>r!   c              
      s"   g | ]}j | d qS ))rG   r"   r#   r'   r(   r>   )rM   )rO   rG   )r(   r'   r"   r>   r7   r#   r4   r;   rQ     s    	labels)dataZtensor_type)r"   r$   r%   r&   r'   r)   r#   r
   r(   r   r   r?   r   r	   )r7   rB   r@   r"   r#   r$   r%   r&   r'   r(   r)   rN   r=   r>   rS   r4   rP   r;   
preprocess.  sT   =
	z"MobileViTImageProcessor.preprocesstarget_sizesc                    s   |j }|durHt|t|krtdt|r| }g  tt|D ]"}tjjj	|| j
dd|| ddd}|d jdd} | q# S |jdd  fd	d
t jd D   S )a@  
        Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

        Args:
            outputs ([`MobileViTForSemanticSegmentation`]):
                Raw outputs of the model.
            target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
                List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
                predictions will not be resized.

        Returns:
            semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
            segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
            specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
        NzTMake sure that you pass in as many target sizes as the batch dimension of the logitsr   )dimZbilinearF)r#   modeZalign_cornersrI   c                    s   g | ]} | qS r4   r4   )rO   iZsemantic_segmentationr4   r;   rQ     s    zNMobileViTImageProcessor.post_process_semantic_segmentation.<locals>.<listcomp>)logitslenr?   r   numpyrangetorchnnZ
functionalZinterpolateZ	unsqueezeZargmaxappendshape)r7   ZoutputsrU   rZ   idxZresized_logitsZsemantic_mapr4   rY   r;   "post_process_semantic_segmentation  s&   z:MobileViTImageProcessor.post_process_semantic_segmentation)NN)N)NNNNN)
NNNNNNNNNN)#__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strintr   floatr6   rL   Zndarrayr   r   r   rA   r   rD   rF   rM   r   rK   r   PILZImagerT   r   r   rc   __classcell__r4   r4   r9   r;   r    7   sn   
	 

4
	

	

-
&	
  r    ),rg   typingr   r   r   r   r   r\   rL   Zimage_processing_utilsr   r	   r
   Zimage_transformsr   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   utilsr   r   r   r   r   r   Zutils.import_utilsr   rl   r^   Z
get_loggerrd   rE   r    __all__r4   r4   r4   r;   <module>   s&   , 
   
2