o
    ZŽh£  ã                   @   s‚   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ e e¡ZG d	d
„ d
eƒZG dd„ de
ƒZd
dgZdS )zMobileViT model configurationé    ©ÚOrderedDict)ÚMapping)Úversioné   )ÚPretrainedConfig)Ú
OnnxConfig)Úloggingc                       s\   e Zd ZdZdZdddg d¢g d¢dd	d
ddddddddddg d¢ddf‡ fdd„	Z‡  ZS )ÚMobileViTConfigaë  
    This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a
    MobileViT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MobileViT
    [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 256):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 2):
            The size (resolution) of each patch.
        hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`):
            Dimensionality (hidden size) of the Transformer encoders at each stage.
        neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`):
            The number of channels for the feature maps of the backbone.
        num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        mlp_ratio (`float`, *optional*, defaults to 2.0):
            The ratio of the number of channels in the output of the MLP to the number of channels in the input.
        expand_ratio (`float`, *optional*, defaults to 4.0):
            Expansion factor for the MobileNetv2 layers.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
        conv_kernel_size (`int`, *optional*, defaults to 3):
            The size of the convolutional kernel in the MobileViT layer.
        output_stride (`int`, *optional*, defaults to 32):
            The ratio of the spatial resolution of the output to the resolution of the input image.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the Transformer encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for attached classifiers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        aspp_out_channels (`int`, *optional*, defaults to 256):
            Number of output channels used in the ASPP layer for semantic segmentation.
        atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
            Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
        aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the ASPP layer for semantic segmentation.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.

    Example:

    ```python
    >>> from transformers import MobileViTConfig, MobileViTModel

    >>> # Initializing a mobilevit-small style configuration
    >>> configuration = MobileViTConfig()

    >>> # Initializing a model from the mobilevit-small style configuration
    >>> model = MobileViTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Z	mobilevitr   é   é   )é   éÀ   éð   )é   é    é@   é`   é€   é    i€  é   g       @g      @Zsilur   gš™™™™™¹?g        g{®Gáz”?gñhãˆµøä>T)é   é   é   éÿ   c                    s”   t ƒ jdi |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N© )ÚsuperÚ__init__Únum_channelsÚ
image_sizeÚ
patch_sizeÚhidden_sizesÚneck_hidden_sizesÚnum_attention_headsÚ	mlp_ratioÚexpand_ratioÚ
hidden_actÚconv_kernel_sizeÚoutput_strideÚhidden_dropout_probÚattention_probs_dropout_probÚclassifier_dropout_probÚinitializer_rangeÚlayer_norm_epsÚqkv_biasÚaspp_out_channelsÚatrous_ratesÚaspp_dropout_probÚsemantic_loss_ignore_index)Úselfr   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   Úkwargs©Ú	__class__r   úd/var/www/auris/lib/python3.10/site-packages/transformers/models/mobilevit/configuration_mobilevit.pyr   e   s,   
zMobileViTConfig.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r5   r7   r
      s2    Dêr
   c                   @   sl   e Zd Ze d¡Zedeeee	ef f fdd„ƒZ
edeeee	ef f fdd„ƒZedefdd„ƒZd	S )
ÚMobileViTOnnxConfigz1.11Úreturnc                 C   s   t ddddddœfgƒS )NZpixel_valuesÚbatchr   ÚheightÚwidth)r   é   r   r   r   ©r3   r   r   r7   Úinputsœ   s   zMobileViTOnnxConfig.inputsc                 C   s8   | j dkrtdddifgƒS tdddifdddifgƒS )Nzimage-classificationZlogitsr   r?   Zlast_hidden_stateZpooler_output)Útaskr   rC   r   r   r7   Úoutputs    s   
zMobileViTOnnxConfig.outputsc                 C   s   dS )Ng-Cëâ6?r   rC   r   r   r7   Úatol_for_validation§   s   z'MobileViTOnnxConfig.atol_for_validationN)r8   r9   r:   r   ÚparseZtorch_onnx_minimum_versionÚpropertyr   ÚstrÚintrD   rF   ÚfloatrG   r   r   r   r7   r=   ™   s    
  r=   N)r;   Úcollectionsr   Útypingr   Ú	packagingr   Zconfiguration_utilsr   Zonnxr   Úutilsr	   Z
get_loggerr8   Úloggerr
   r=   Ú__all__r   r   r   r7   Ú<module>   s   
{