o
    ZhR                     @   s   d Z ddlmZmZmZmZmZ ddlZddl	m
Z
mZmZ ddlmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZmZ ddl m!Z!m"Z"m#Z# e#$e%Z&e" r^ddl'Z'G d	d
 d
e
Z(d
gZ)dS )z Image processor class for LLaVa.    )DictListOptionalTupleUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbget_resize_output_image_sizeresizeto_channel_dimension_format)OPENAI_CLIP_MEANOPENAI_CLIP_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_kwargsvalidate_preprocess_arguments)
TensorTypeis_vision_availableloggingc                $       s<  e Zd ZdZdgZdddejddddddddfdeded	ee	e
ef  d
ededee	e
ef  dedeeef dedeeeee f  deeeee f  deddf fddZ			d#dejdeeeeeef f deee
ef  deee
ef  dejf
ddZejddfdejd	e	e
ef d
edeee
ef  deee
ef  dejfddZdddddddddddddejdfdedee dee d	ee	e
ef  d
ee dee dee dee dee dee deeeee f  deeeee f  dee d eee
ef  dee deee
ef  dejjf"d!d"Z  ZS )$LlavaImageProcessora  
    Constructs a LLaVa image processor.

    Args:
        do_pad (`bool`, *optional*, defaults to `False`):
            Whether to pad the image to a square based on the longest edge.
            The padding value is determined by the `image_mean` parameter.
            Can be overridden by `do_pad` in the `preprocess` method.
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
            `preprocess` method.
        crop_size (`Dict[str, int]` *optional*, defaults to 224):
            Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
            method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesFTNgp?do_pad	do_resizesizeresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc                    s   t  jd
i | |d ur|nddi}t|dd}|d ur|nddd}t|ddd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
d urL|
nt| _|d urU|nt| _|| _g d	| _d S )Nshortest_edge   F)default_to_square)heightwidthTr&   )r0   
param_name)imagesr!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   return_tensorsdata_formatinput_data_format )super__init__r
   r!   r"   r#   r$   r%   r&   r'   r(   r)   r   r*   r   r+   r,   _valid_processor_keys)selfr!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   kwargs	__class__r8   _/var/www/auris/lib/python3.10/site-packages/transformers/models/llava/image_processing_llava.pyr:   b   s$   zLlavaImageProcessor.__init__r   imagebackground_colorr6   r7   c                 C   s  t ||\}}|tjkr|jd n|jd }||kr*|dur&t|||}|S |}|S t||}t|tr8|g}nt||krFt	d| d|tjkrt
j|||f|jd}	t|D ]\}
}||	|
ddddf< qZ||kr|| d }||	dd||| ddf< nd|| d }||	dddd||| f< nNt
j|||f|jd}	t|D ]\}
}||	dddd|
f< q||kr|| d }||	||| ddddf< n|| d }||	dd||| ddf< |durt|	||}|S |	}|S )a  
        Pads an image to a square based on the longest edge.

        Args:
            image (`np.ndarray`):
                The image to pad.
            background_color (`int` or `Tuple[int, int, int]`, *optional*, defaults to 0):
                The color to use for the padding. Can be an integer for single channel or a
                tuple of integers representing for multi-channel images. If passed as integer
                in mutli-channel mode, it will default to `0` in subsequent channels.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use the inferred format of the input image.

        Returns:
            `np.ndarray`: The padded image.
        r   Nz(background_color must have no more than z) elements to match the number of channels)dtype   )r   r   FIRSTshaper   max
isinstanceintlen
ValueErrornpZzerosrD   	enumerate)r<   rA   rB   r6   r7   r1   r2   Znum_channelsZmax_dimresulticolorstartr8   r8   r@   pad_to_square   sP   




   z!LlavaImageProcessor.pad_to_squarec           	      K   sn   d}d|v r|d }d}nd|v rd|v r|d |d f}nt dt||||d}t|f||||d|S )	aZ  
        Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
        resized to keep the input aspect ratio.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Tr.   Fr1   r2   zASize must contain either 'shortest_edge' or 'height' and 'width'.)r#   r0   r7   )r#   r$   r6   r7   )rL   r   r   )	r<   rA   r#   r$   r6   r7   r=   r0   Zoutput_sizer8   r8   r@   r      s.   zLlavaImageProcessor.resizer4   r5   c                 K   s8  |dur|n| j }|dur|n| j}|dur|n| j}t|ddd}|dur(|n| j}|dur1|n| j}|dur:|n| j}t|ddd}|durJ|n| j}|	durS|	n| j}	|
dur\|
n| j	}
|dure|n| j
}|durn|n| j}|durw|n| j}t| | jd t|}t|stdt||	|
|||||||d	
 |rd
d |D }dd |D }t|d r|rtd |du rt|d }g }|D ]K}|r| j|tdd | j
D |d}|r| j||||d}|r| j|||d}|r| j||	|d}|
r| j||||d}t|||d}|| qt d|i|dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_pad (`bool`, *optional*, defaults to `self.do_pad`):
                Whether to pad the image to a square based on the longest edge.
                The padding value is determined by the `image_mean` parameter.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr#   F)r3   r0   r&   T)Zcaptured_kwargsZvalid_processor_keyszkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r'   r(   r)   r*   r+   r%   r&   r"   r#   r$   c                 S      g | ]}t |qS r8   )r   .0rA   r8   r8   r@   
<listcomp>      z2LlavaImageProcessor.preprocess.<locals>.<listcomp>c                 S   rT   r8   )r   rU   r8   r8   r@   rW     rX   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                 s   s    | ]	}t |d  V  qdS )   N)rJ   )rV   xr8   r8   r@   	<genexpr>  s    z1LlavaImageProcessor.preprocess.<locals>.<genexpr>)rA   rB   r7   )rA   r#   r$   r7   )rA   r#   r7   )rA   scaler7   )rA   meanZstdr7   )Zinput_channel_dimr    )dataZtensor_type)!r!   r"   r#   r
   r$   r%   r&   r'   r(   r)   r*   r+   r,   r   keysr;   r   r   rL   r   r   loggerZwarning_oncer   rS   tupler   Zcenter_cropZrescale	normalizer   appendr	   )r<   r4   r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r5   r6   r7   r=   Zprocessed_imagesrA   r8   r8   r@   
preprocess  s|   JzLlavaImageProcessor.preprocess)r   NN)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBICUBICboolr   r   strrJ   r   floatr   r:   rM   Zndarrayr   r   arrayrS   r   rF   r   r   PILZImagerd   __classcell__r8   r8   r>   r@   r   5   s    *
	
8
S

4	
r   )*rh   typingr   r   r   r   r   numpyrM   Zimage_processing_utilsr   r	   r
   Zimage_transformsr   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Z
get_loggerre   r`   rm   r   __all__r8   r8   r8   r@   <module>   s   <
   
