o
    Zh9A                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZ dd	l m!Z! e"e#Z$e!d
dG dd de	Z%dgZ&dS )z Image processor class for LeViT.    )DictIterableOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)get_resize_output_image_sizeresizeto_channel_dimension_format)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargslogging)requires)Zvision)backendsc                !       s  e Zd ZdZdgZddejdddddeef
de	de
eeef  ded	e	d
e
eeef  de	deeef de	de
eeee f  de
eeee f  ddf fddZejddfdejdeeef dede
eeef  de
eeef  dejfddZe dddddddddddejdfdede
e	 de
eeef  ded	e
e	 d
e
eeef  de
e	 de
e de
e	 de
eeee f  de
eeee f  de
e dede
eeef  defddZ  ZS )LevitImageProcessora  
    Constructs a LeViT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`):
            Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will
            be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest
            edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this
            value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width,
            size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden
            by the `do_center_crop` parameter in the `preprocess` method.
        crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess`
            method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
            `do_rescale` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
            `preprocess` method.
        image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizeresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stdreturnc                    s   t  jdi | |d ur|nddi}t|dd}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	d urH|	nt| _|
d urT|
| _d S t| _d S )	Nshortest_edge   Fdefault_to_squareheightwidthr#   
param_name )super__init__r	   r   r    r!   r"   r#   r$   r%   r&   r   r'   r   r(   )selfr   r    r!   r"   r#   r$   r%   r&   r'   r(   kwargs	__class__r3   _/var/www/auris/lib/python3.10/site-packages/transformers/models/levit/image_processing_levit.pyr5   Z   s   zLevitImageProcessor.__init__imagedata_formatinput_data_formatc           
      K   s   t |dd}d|v r#td|d  }t||d|d}	|	d |	d d}d	|vs+d
|vr4td|  t|f|d	 |d
 f|||d|S )a-  
        Resize an image.

        If size is a dict with keys "width" and "height", the image will be resized to `(size["height"],
        size["width"])`.

        If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`.
        The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled
        to `(size["shortest_egde"] * height / width, size["shortest_egde"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
                will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
                `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
                i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Fr,   r*   g$I$I?)r    r-   r=   r      r.   r/   r0   zFSize dict must have keys 'height' and 'width' or 'shortest_edge'. Got )r    r!   r<   r=   )r	   intr
   
ValueErrorkeysr   )
r6   r;   r    r!   r<   r=   r7   Z	size_dictr*   Zoutput_sizer3   r3   r:   r   y   s*   "zLevitImageProcessor.resizeimagesreturn_tensorsc                    s  |dur|nj }durnj|dur|nj}|dur!|nj}dur*nj|	dur3|	nj}	dur<njdurEnjdurNnjt	dd dur] nj
 t	 dd t|}t|srtdt||	| |d
 dd	 |D }|rt|d
 rtd du rt|d
 |rfdd	|D }|r fdd	|D }|rƇfdd	|D }|	rԇfdd	|D }fdd	|D }d|i}t||dS )a  
        Preprocess an image or batch of images to be used as input to a LeViT model.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
                from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
                will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
                `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
                i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resiizing the image.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the output image after center cropping. Crops images to (crop_size["height"],
                crop_size["width"]).
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Factor to rescale the image pixel values by.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image pixel values by `image_mean` and `image_std`.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Mean to normalize the image pixel values by.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to normalize the image pixel values by.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr,   r#   r1   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r$   r%   r&   r'   r(   r"   r#   r   r    r!   c                 S   s   g | ]}t |qS r3   )r   .0r;   r3   r3   r:   
<listcomp>  s    z2LevitImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                    s   g | ]}j | d qS )r=   )r   rD   )r=   r!   r6   r    r3   r:   rF   "  s    c                    s   g | ]
}j | d qS rG   )Zcenter_croprD   )r#   r=   r6   r3   r:   rF   %      c                    s   g | ]
}j | d qS rG   )ZrescalerD   )r=   r%   r6   r3   r:   rF   (  rH   c                    s   g | ]}j | d qS rG   )	normalizerD   )r'   r(   r=   r6   r3   r:   rF   +  s    c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   rD   )r<   r=   r3   r:   rF   /  s    r   )dataZtensor_type)r   r!   r"   r$   r%   r&   r'   r(   r    r	   r#   r   r   r@   r   r   loggerZwarning_oncer   r   )r6   rB   r   r    r!   r"   r#   r$   r%   r&   r'   r(   rC   r<   r=   rJ   r3   )	r#   r<   r'   r(   r=   r!   r%   r6   r    r:   
preprocess   sf   DzLevitImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBICUBICr   r   boolr   r   strr?   r   floatr   r5   npZndarrayr   r   r   ZFIRSTr   r   r   rL   __classcell__r3   r3   r8   r:   r   /   s    '
	
#

7	
r   )'rP   typingr   r   r   r   numpyrT   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Zutils.import_utilsr   Z
get_loggerrM   rK   r   __all__r3   r3   r3   r:   <module>   s   4
  
	