o
    ZhvH                     @   s2  d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZm Z m!Z!m"Z" dd	l#m$Z$ e  r]ddl%Z%e rdddl&Z&e!'e(Z)d
d Z*	ddej+dee, dee, deeee,f  fddZ-e$ddG dd de	Z.dgZ/dS )z%Image processor class for LayoutLMv3.    )DictIterableOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)resizeto_channel_dimension_formatto_pil_image)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_pytesseract_availableis_vision_availableloggingrequires_backends)requiresc                 C   sL   t d| d |  t d| d |  t d| d |  t d| d |  gS )Ni  r         r   )int)boxwidthheight r%   i/var/www/auris/lib/python3.10/site-packages/transformers/models/layoutlmv3/image_processing_layoutlmv3.pynormalize_box9   s
   r'   imagelangtesseract_configinput_data_formatc                    sR  t | |d}|j\}}tj||d|d}|d |d |d |d |d f\}}	}
}}d	d
 t|D   fdd
t|D } fdd
t|	D }	 fdd
t|
D }
 fdd
t|D } fdd
t|D }g }t|	|
||D ]\}}}}|||| || g}|| qsg }|D ]}|t||| qt|t|ksJ d||fS )zdApplies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.r+   dict)r)   output_typeconfigtextlefttopr#   r$   c                 S   s   g | ]
\}}|  s|qS r%   )strip.0idxwordr%   r%   r&   
<listcomp>Q       z#apply_tesseract.<locals>.<listcomp>c                       g | ]
\}}| vr|qS r%   r%   r4   Zirrelevant_indicesr%   r&   r8   R   r9   c                    r:   r%   r%   r5   r6   Zcoordr;   r%   r&   r8   S   r9   c                    r:   r%   r%   r<   r;   r%   r&   r8   T   r9   c                    r:   r%   r%   r<   r;   r%   r&   r8   U   r9   c                    r:   r%   r%   r<   r;   r%   r&   r8   V   r9   z-Not as many words as there are bounding boxes)	r   sizepytesseractZimage_to_data	enumeratezipappendr'   len)r(   r)   r*   r+   Z	pil_imageZimage_widthZimage_heightdatawordsr1   r2   r#   r$   Zactual_boxesxywhZ
actual_boxZnormalized_boxesr"   r%   r;   r&   apply_tesseractB   s&   	
,rI   )Zvision)backendsc                !       s  e Zd ZdZdgZddejddddddddfdedee	e
ef  d	ed
edededeeeee f  deeeee f  dedee
 dee
 ddf fddZejddfdejde	e
ef d	edeee
ef  deee
ef  dejfddZe ddddddddddddejdfdedee dee	e
ef  d
ee dee dee deeeee f  deeeee f  dee dee
 dee
 deee
ef  dedeee
ef  dejjfddZ  ZS )LayoutLMv3ImageProcessora
  
    Constructs a LayoutLMv3 image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be
            overridden by `do_resize` in `preprocess`.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after resizing. Can be overridden by `size` in `preprocess`.
        resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image's pixel values by the specified `rescale_value`. Can be overridden by
            `do_rescale` in `preprocess`.
        rescale_factor (`float`, *optional*, defaults to 1 / 255):
            Value by which the image's pixel values are rescaled. Can be overridden by `rescale_factor` in
            `preprocess`.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
        apply_ocr (`bool`, *optional*, defaults to `True`):
            Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by
            the `apply_ocr` parameter in the `preprocess` method.
        ocr_lang (`str`, *optional*):
            The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
            used. Can be overridden by the `ocr_lang` parameter in the `preprocess` method.
        tesseract_config (`str`, *optional*):
            Any additional custom configuration flags that are forwarded to the `config` parameter when calling
            Tesseract. For example: '--psm 6'. Can be overridden by the `tesseract_config` parameter in the
            `preprocess` method.
    pixel_valuesTNgp? 	do_resizer=   resample
do_rescalerescale_valuedo_normalize
image_mean	image_std	apply_ocrocr_langr*   returnc                    s   t  jdi | |d ur|nddd}t|}|| _|| _|| _|| _|| _|| _|d ur0|nt	| _
|d ur9|nt| _|	| _|
| _|| _d S )N   )r$   r#   r%   )super__init__r	   rN   r=   rO   rP   rescale_factorrR   r   rS   r   rT   rU   rV   r*   )selfrN   r=   rO   rP   rQ   rR   rS   rT   rU   rV   r*   kwargs	__class__r%   r&   rZ      s   
z!LayoutLMv3ImageProcessor.__init__r(   data_formatr+   c                 K   sT   t |}d|vsd|vrtd|  |d |d f}t|f||||d|S )a  
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        r$   r#   zFThe `size` dictionary must contain the keys `height` and `width`. Got )r=   rO   r`   r+   )r	   
ValueErrorkeysr
   )r\   r(   r=   rO   r`   r+   r]   Zoutput_sizer%   r%   r&   r
      s   #zLayoutLMv3ImageProcessor.resizeimagesr[   return_tensorsc              
      s  |dur|nj }durnjtdurnj|dur%|nj}dur.nj|dur7|nj}dur@njdurInj|
durR|
nj	}
|dur[|nj
}|durd|nj}t|}t|sstdt|||d dd |D }|rt|d rtd du rt|d |
rtd g }g }|D ]}t|||d	\}}|| || q|rχfd
d|D }|r܇fdd|D }|rfdd|D } fdd|D }td|i|d}|
r||d< ||d< |S )a%  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Desired size of the output image after applying `resize`.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` filters.
                Only has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image pixel values between [0, 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to apply to the image pixel values. Only has an effect if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `Iterable[float]`, *optional*, defaults to `self.image_mean`):
                Mean values to be used for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `Iterable[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation values to be used for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`):
                Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes.
            ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`):
                The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
                used.
            tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`):
                Any additional custom configuration flags that are forwarded to the `config` parameter when calling
                Tesseract.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NzkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)rP   r[   rR   rS   rT   rN   r=   rO   c                 S   s   g | ]}t |qS r%   )r   r5   r(   r%   r%   r&   r8   G  s    z7LayoutLMv3ImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.r>   r,   c                    s   g | ]}j | d qS ))r(   r=   rO   r+   )r
   re   )r+   rO   r\   r=   r%   r&   r8   ^      c                    s   g | ]
}j | d qS ))r(   scaler+   )Zrescalere   )r+   r[   r\   r%   r&   r8   d  s    c                    s   g | ]}j | d qS ))r(   meanZstdr+   )	normalizere   )rS   rT   r+   r\   r%   r&   r8   j  rf   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   re   )r`   r+   r%   r&   r8   o  s    rL   )rC   Ztensor_typerD   boxes)rN   r=   r	   rO   rP   r[   rR   rS   rT   rU   rV   r*   r   r   ra   r   r   loggerZwarning_oncer   r   rI   rA   r   )r\   rc   rN   r=   rO   rP   r[   rR   rS   rT   rU   rV   r*   rd   r`   r+   Zwords_batchZboxes_batchr(   rD   rj   rC   r%   )r`   rS   rT   r+   rO   r[   r\   r=   r&   
preprocess   s|   F

z#LayoutLMv3ImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strr!   floatr   r   rZ   npndarrayr   r
   r   ZFIRSTr   r   PILZImagerl   __classcell__r%   r%   r^   r&   rK   h   s    &	
$

0	
rK   )N)0rp   typingr   r   r   r   numpyrt   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   r   r   Zutils.import_utilsr   rv   r>   Z
get_loggerrm   rk   r'   ru   rr   rI   rK   __all__r%   r%   r%   r&   <module>   s:   4 

&  
