o
    ZhB                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZ dd	lm Z m!Z! e"e#Z$G d
d de	Z%dgZ&dS )z{
Image processor class for InstructBLIPVideo. Largely copy of Blip2Processor with addition of a video processing abilities
    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbresizeto_channel_dimension_format)
OPENAI_CLIP_MEANOPENAI_CLIP_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargslogging)
VideoInputmake_batched_videosc                       sP  e Zd ZdZdgZddejddddddf	dedee	e
ef  ded	ed
eeef dedeeeee f  deeeee f  deddf fddZejddfdejde	e
ef dedeee
ef  deee
ef  dejfddZe dddddddddddejdfdedee dee	e
ef  ded	ee d
ee dee deeeee f  deeeee f  deee
ef  dee dedeee
ef  defddZddddddddddejdfdedee dee	e
ef  ded	ee d
ee dee deeeee f  deeeee f  dee dedeee
ef  dejfddZ  ZS )InstructBlipVideoImageProcessora	  
    Constructs a InstructBLIPVideo image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
            overridden by the `resample` parameter in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
            `do_rescale` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
            overridden by the `rescale_factor` parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
            overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTNgp?	do_resizesizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc
                    s   t  jdi |
 |d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|d ur2|nt	| _
|d ur;|nt| _|	| _d S )Ni  )heightwidthTZdefault_to_square )super__init__r	   r   r   r    r!   r"   r#   r   r$   r   r%   r&   )selfr   r   r    r!   r"   r#   r$   r%   r&   kwargs	__class__r+   w/var/www/auris/lib/python3.10/site-packages/transformers/models/instructblipvideo/image_processing_instructblipvideo.pyr-   T   s   
z(InstructBlipVideoImageProcessor.__init__imagedata_formatinput_data_formatc                 K   sT   t |}d|vsd|vrtd|  |d |d f}t|f||||d|S )a  
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        r(   r)   zFThe `size` dictionary must contain the keys `height` and `width`. Got )r   r    r4   r5   )r	   
ValueErrorkeysr   )r.   r3   r   r    r4   r5   r/   Zoutput_sizer+   r+   r2   r   p   s   #z&InstructBlipVideoImageProcessor.resizeimagesreturn_tensorsc                    s$  durn
j durn
jdurn
j	dur!	n
j	dur*n
jdur3n
jdur<n
jdurEn
jdurNn
jt	ddt
|}td t	d t|sttd 	
fdd|D }td	|i|
d
}|S )a  
        Preprocess a video or batch of images/videos.

        Args:
            videos (`VideoInput`):
                Video frames to preprocess. Expects a single or batch of videos as a list of frames with pixel values
                ranging from 0 to 255. If passing in video with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the video.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Controls the size of the video after `resize`. The shortest edge of the image is resized to
                `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
                is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
                edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the video. Only has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the video values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the video by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the video.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to normalize the video by if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to normalize the video by if `do_normalize` is set to `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr*   z`InstructBlipVideoImageProcessor` is deprecated and will be removed in v5.0. We recommend to load an instance of `InstructBlipVideoVideoProcessor` to process videos for the model. )r!   r"   r#   r$   r%   r   r   r    zkInvalid input type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.c                    s4   g | ]} 	
fd d|D qS )c                    s.   g | ]}
j |	 d qS ))r3   r   r   r    r!   r"   r#   r$   r%   r&   r4   r5   )_preprocess_image).0framer4   r&   r#   r!   r   r$   r%   r5   r    r"   r.   r   r+   r2   
<listcomp>  s"    zIInstructBlipVideoImageProcessor.preprocess.<locals>.<listcomp>.<listcomp>r+   )r;   Zvideor=   r+   r2   r>     s     z>InstructBlipVideoImageProcessor.preprocess.<locals>.<listcomp>r   )dataZtensor_type)r   r    r!   r"   r#   r$   r%   r&   r   r	   r   loggerwarningr   r   r6   r   )r.   r8   r   r   r    r!   r"   r#   r$   r%   r9   r&   r4   r5   Zvideosr   Zencoded_outputsr+   r=   r2   
preprocess   sB   @ z*InstructBlipVideoImageProcessor.preprocessc                 C   s   |
rt |}t|}|rt|rtd |d u rt|}|r(| j||||d}|r2| j|||d}|r=| j|||	|d}t	|||d}|S )NzIt looks like you are trying to rescale already rescaled video frames. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)r3   r   r    r5   )r3   scaler5   )r3   meanZstdr5   )Zinput_channel_dim)
r
   r   r   r@   Zwarning_oncer   r   Zrescale	normalizer   )r.   r3   r   r   r    r!   r"   r#   r$   r%   r&   r4   r5   r+   r+   r2   r:     s"   z1InstructBlipVideoImageProcessor._preprocess_image)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBICUBICboolr   r   strintr   floatr   r-   npZndarrayr   r   r   ZFIRSTr   r   r   rB   r   r:   __classcell__r+   r+   r0   r2   r   /   s   "
	
 

2	
}	
r   )'rI   typingr   r   r   r   numpyrN   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   utilsr   r   r   Zvideo_utilsr   r   Z
get_loggerrF   r@   r   __all__r+   r+   r+   r2   <module>   s   0
  
