#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/grounding_dino/modular_grounding_dino.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_grounding_dino.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import pathlib
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
    BaseImageProcessorFast,
    DefaultFastImageProcessorKwargs,
    SizeDict,
    get_image_size_for_max_height_width,
    get_max_height_width,
    safe_squeeze,
)
from ...image_transforms import center_to_corners_format, corners_to_center_format
from ...image_utils import (
    IMAGENET_DEFAULT_MEAN,
    IMAGENET_DEFAULT_STD,
    AnnotationFormat,
    AnnotationType,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    get_image_size,
    validate_annotations,
)
from ...processing_utils import Unpack
from ...utils import (
    TensorType,
    auto_docstring,
    is_torch_available,
    is_torchvision_available,
    is_torchvision_v2_available,
    logging,
)
from ...utils.import_utils import requires
from .image_processing_grounding_dino import get_size_with_aspect_ratio


if TYPE_CHECKING:
    from .modeling_grounding_dino import GroundingDinoObjectDetectionOutput

if is_torch_available():
    import torch


if is_torchvision_v2_available():
    from torchvision.io import read_image
    from torchvision.transforms.v2 import functional as F
elif is_torchvision_available():
    from torchvision.io import read_image
    from torchvision.transforms import functional as F


logger = logging.get_logger(__name__)


class GroundingDinoFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
    r"""
    format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`):
        Data format of the annotations. One of "coco_detection" or "coco_panoptic".
    do_convert_annotations (`bool`, *optional*, defaults to `True`):
        Controls whether to convert the annotations to the format expected by the GROUNDING_DINO model. Converts the
        bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
        Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
    do_pad (`bool`, *optional*, defaults to `True`):
        Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
        method. If `True`, padding will be applied to the bottom and right of the image with zeros.
        If `pad_size` is provided, the image will be padded to the specified dimensions.
        Otherwise, the image will be padded to the maximum height and width of the batch.
    pad_size (`Dict[str, int]`, *optional*):
        The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
        provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
        height and width in the batch.
    return_segmentation_masks (`bool`, *optional*, defaults to `False`):
        Whether to return segmentation masks.
    """

    format: Optional[Union[str, AnnotationFormat]]
    do_convert_annotations: Optional[bool]
    do_pad: Optional[bool]
    pad_size: Optional[Dict[str, int]]
    return_segmentation_masks: Optional[bool]


SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)


# inspired by https://github.com/facebookresearch/grounding_dino/blob/master/datasets/coco.py#L33
def convert_coco_poly_to_mask(segmentations, height: int, width: int, device: torch.device) -> torch.Tensor:
    """
    Convert a COCO polygon annotation to a mask.

    Args:
        segmentations (`List[List[float]]`):
            List of polygons, each polygon represented by a list of x-y coordinates.
        height (`int`):
            Height of the mask.
        width (`int`):
            Width of the mask.
    """
    try:
        from pycocotools import mask as coco_mask
    except ImportError:
        raise ImportError("Pycocotools is not installed in your environment.")

    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8, device=device)
        mask = torch.any(mask, axis=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, axis=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8, device=device)

    return masks


# inspired by https://github.com/facebookresearch/grounding_dino/blob/master/datasets/coco.py#L50
def prepare_coco_detection_annotation(
    image,
    target,
    return_segmentation_masks: bool = False,
    input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
    """
    Convert the target in COCO format into the format expected by GROUNDING_DINO.
    """
    image_height, image_width = image.size()[-2:]

    image_id = target["image_id"]
    image_id = torch.as_tensor([image_id], dtype=torch.int64, device=image.device)

    # Get all COCO annotations for the given image.
    annotations = target["annotations"]
    classes = []
    area = []
    boxes = []
    keypoints = []
    for obj in annotations:
        if "iscrowd" not in obj or obj["iscrowd"] == 0:
            classes.append(obj["category_id"])
            area.append(obj["area"])
            boxes.append(obj["bbox"])
            if "keypoints" in obj:
                keypoints.append(obj["keypoints"])

    classes = torch.as_tensor(classes, dtype=torch.int64, device=image.device)
    area = torch.as_tensor(area, dtype=torch.float32, device=image.device)
    iscrowd = torch.zeros_like(classes, dtype=torch.int64, device=image.device)
    # guard against no boxes via resizing
    boxes = torch.as_tensor(boxes, dtype=torch.float32, device=image.device).reshape(-1, 4)
    boxes[:, 2:] += boxes[:, :2]
    boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
    boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)

    keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])

    new_target = {
        "image_id": image_id,
        "class_labels": classes[keep],
        "boxes": boxes[keep],
        "area": area[keep],
        "iscrowd": iscrowd[keep],
        "orig_size": torch.as_tensor([int(image_height), int(image_width)], dtype=torch.int64, device=image.device),
    }

    if keypoints:
        keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=image.device)
        # Apply the keep mask here to filter the relevant annotations
        keypoints = keypoints[keep]
        num_keypoints = keypoints.shape[0]
        keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
        new_target["keypoints"] = keypoints

    if return_segmentation_masks:
        segmentation_masks = [obj["segmentation"] for obj in annotations]
        masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width, device=image.device)
        new_target["masks"] = masks[keep]

    return new_target


def masks_to_boxes(masks: torch.Tensor) -> torch.Tensor:
    """
    Compute the bounding boxes around the provided panoptic segmentation masks.

    Args:
        masks: masks in format `[number_masks, height, width]` where N is the number of masks

    Returns:
        boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
    """
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device)

    h, w = masks.shape[-2:]
    y = torch.arange(0, h, dtype=torch.float32, device=masks.device)
    x = torch.arange(0, w, dtype=torch.float32, device=masks.device)
    # see https://github.com/pytorch/pytorch/issues/50276
    y, x = torch.meshgrid(y, x, indexing="ij")

    x_mask = masks * torch.unsqueeze(x, 0)
    x_max = x_mask.view(x_mask.shape[0], -1).max(-1)[0]
    x_min = (
        torch.where(masks, x.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
    )

    y_mask = masks * torch.unsqueeze(y, 0)
    y_max = y_mask.view(y_mask.shape[0], -1).max(-1)[0]
    y_min = (
        torch.where(masks, y.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
    )

    return torch.stack([x_min, y_min, x_max, y_max], 1)


# 2 functions below adapted from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
# Copyright (c) 2018, Alexander Kirillov
# All rights reserved.
def rgb_to_id(color):
    """
    Converts RGB color to unique ID.
    """
    if isinstance(color, torch.Tensor) and len(color.shape) == 3:
        if color.dtype == torch.uint8:
            color = color.to(torch.int32)
        return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
    return int(color[0] + 256 * color[1] + 256 * 256 * color[2])


def prepare_coco_panoptic_annotation(
    image: torch.Tensor,
    target: Dict,
    masks_path: Union[str, pathlib.Path],
    return_masks: bool = True,
    input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
    """
    Prepare a coco panoptic annotation for GROUNDING_DINO.
    """
    image_height, image_width = get_image_size(image, channel_dim=input_data_format)
    annotation_path = pathlib.Path(masks_path) / target["file_name"]

    new_target = {}
    new_target["image_id"] = torch.as_tensor(
        [target["image_id"] if "image_id" in target else target["id"]], dtype=torch.int64, device=image.device
    )
    new_target["size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)
    new_target["orig_size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)

    if "segments_info" in target:
        masks = read_image(annotation_path).permute(1, 2, 0).to(dtype=torch.int32, device=image.device)
        masks = rgb_to_id(masks)

        ids = torch.as_tensor([segment_info["id"] for segment_info in target["segments_info"]], device=image.device)
        masks = masks == ids[:, None, None]
        masks = masks.to(torch.bool)
        if return_masks:
            new_target["masks"] = masks
        new_target["boxes"] = masks_to_boxes(masks)
        new_target["class_labels"] = torch.as_tensor(
            [segment_info["category_id"] for segment_info in target["segments_info"]],
            dtype=torch.int64,
            device=image.device,
        )
        new_target["iscrowd"] = torch.as_tensor(
            [segment_info["iscrowd"] for segment_info in target["segments_info"]],
            dtype=torch.int64,
            device=image.device,
        )
        new_target["area"] = torch.as_tensor(
            [segment_info["area"] for segment_info in target["segments_info"]],
            dtype=torch.float32,
            device=image.device,
        )

    return new_target


def _scale_boxes(boxes, target_sizes):
    """
    Scale batch of bounding boxes to the target sizes.

    Args:
        boxes (`torch.Tensor` of shape `(batch_size, num_boxes, 4)`):
            Bounding boxes to scale. Each box is expected to be in (x1, y1, x2, y2) format.
        target_sizes (`List[Tuple[int, int]]` or `torch.Tensor` of shape `(batch_size, 2)`):
            Target sizes to scale the boxes to. Each target size is expected to be in (height, width) format.

    Returns:
        `torch.Tensor` of shape `(batch_size, num_boxes, 4)`: Scaled bounding boxes.
    """

    if isinstance(target_sizes, (list, tuple)):
        image_height = torch.tensor([i[0] for i in target_sizes])
        image_width = torch.tensor([i[1] for i in target_sizes])
    elif isinstance(target_sizes, torch.Tensor):
        image_height, image_width = target_sizes.unbind(1)
    else:
        raise ValueError("`target_sizes` must be a list, tuple or torch.Tensor")

    scale_factor = torch.stack([image_width, image_height, image_width, image_height], dim=1)
    scale_factor = scale_factor.unsqueeze(1).to(boxes.device)
    boxes = boxes * scale_factor
    return boxes


@auto_docstring
@requires(backends=("torchvision", "torch"))
class GroundingDinoImageProcessorFast(BaseImageProcessorFast):
    resample = PILImageResampling.BILINEAR
    image_mean = IMAGENET_DEFAULT_MEAN
    image_std = IMAGENET_DEFAULT_STD
    format = AnnotationFormat.COCO_DETECTION
    do_resize = True
    do_rescale = True
    do_normalize = True
    do_pad = True
    size = {"shortest_edge": 800, "longest_edge": 1333}
    default_to_square = False
    model_input_names = ["pixel_values", "pixel_mask"]
    valid_kwargs = GroundingDinoFastImageProcessorKwargs

    def __init__(self, **kwargs: Unpack[GroundingDinoFastImageProcessorKwargs]) -> None:
        if "pad_and_return_pixel_mask" in kwargs:
            kwargs["do_pad"] = kwargs.pop("pad_and_return_pixel_mask")

        size = kwargs.pop("size", None)
        if "max_size" in kwargs:
            logger.warning_once(
                "The `max_size` parameter is deprecated and will be removed in v4.26. "
                "Please specify in `size['longest_edge'] instead`.",
            )
            max_size = kwargs.pop("max_size")
        else:
            max_size = None if size is None else 1333

        size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
        self.size = get_size_dict(size, max_size=max_size, default_to_square=False)

        # Backwards compatibility
        do_convert_annotations = kwargs.get("do_convert_annotations", None)
        do_normalize = kwargs.get("do_normalize", None)
        if do_convert_annotations is None and getattr(self, "do_convert_annotations", None) is None:
            self.do_convert_annotations = do_normalize if do_normalize is not None else self.do_normalize

        super().__init__(**kwargs)

    @classmethod
    def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
        """
        Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
        created using from_dict and kwargs e.g. `GroundingDinoImageProcessorFast.from_pretrained(checkpoint, size=600,
        max_size=800)`
        """
        image_processor_dict = image_processor_dict.copy()
        if "max_size" in kwargs:
            image_processor_dict["max_size"] = kwargs.pop("max_size")
        if "pad_and_return_pixel_mask" in kwargs:
            image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
        return super().from_dict(image_processor_dict, **kwargs)

    def prepare_annotation(
        self,
        image: torch.Tensor,
        target: Dict,
        format: Optional[AnnotationFormat] = None,
        return_segmentation_masks: Optional[bool] = None,
        masks_path: Optional[Union[str, pathlib.Path]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> Dict:
        """
        Prepare an annotation for feeding into GROUNDING_DINO model.
        """
        format = format if format is not None else self.format

        if format == AnnotationFormat.COCO_DETECTION:
            return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
            target = prepare_coco_detection_annotation(
                image, target, return_segmentation_masks, input_data_format=input_data_format
            )
        elif format == AnnotationFormat.COCO_PANOPTIC:
            return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
            target = prepare_coco_panoptic_annotation(
                image,
                target,
                masks_path=masks_path,
                return_masks=return_segmentation_masks,
                input_data_format=input_data_format,
            )
        else:
            raise ValueError(f"Format {format} is not supported.")
        return target

    def resize(
        self,
        image: torch.Tensor,
        size: SizeDict,
        interpolation: "F.InterpolationMode" = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
        int, smaller edge of the image will be matched to this number.

        Args:
            image (`torch.Tensor`):
                Image to resize.
            size (`SizeDict`):
                Size of the image's `(height, width)` dimensions after resizing. Available options are:
                    - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
                        Do NOT keep the aspect ratio.
                    - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
                        the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
                        less or equal to `longest_edge`.
                    - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
                        aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
                        `max_width`.
            interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
                Resampling filter to use if resizing the image.
        """
        interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR
        if size.shortest_edge and size.longest_edge:
            # Resize the image so that the shortest edge or the longest edge is of the given size
            # while maintaining the aspect ratio of the original image.
            new_size = get_size_with_aspect_ratio(
                image.size()[-2:],
                size["shortest_edge"],
                size["longest_edge"],
            )
        elif size.max_height and size.max_width:
            new_size = get_image_size_for_max_height_width(image.size()[-2:], size["max_height"], size["max_width"])
        elif size.height and size.width:
            new_size = (size["height"], size["width"])
        else:
            raise ValueError(
                "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
                f" {size.keys()}."
            )

        image = F.resize(
            image,
            size=new_size,
            interpolation=interpolation,
            **kwargs,
        )
        return image

    def resize_annotation(
        self,
        annotation: Dict[str, Any],
        orig_size: Tuple[int, int],
        target_size: Tuple[int, int],
        threshold: float = 0.5,
        interpolation: "F.InterpolationMode" = None,
    ):
        """
        Resizes an annotation to a target size.

        Args:
            annotation (`Dict[str, Any]`):
                The annotation dictionary.
            orig_size (`Tuple[int, int]`):
                The original size of the input image.
            target_size (`Tuple[int, int]`):
                The target size of the image, as returned by the preprocessing `resize` step.
            threshold (`float`, *optional*, defaults to 0.5):
                The threshold used to binarize the segmentation masks.
            resample (`InterpolationMode`, defaults to `InterpolationMode.NEAREST`):
                The resampling filter to use when resizing the masks.
        """
        interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST
        ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]

        new_annotation = {}
        new_annotation["size"] = target_size

        for key, value in annotation.items():
            if key == "boxes":
                boxes = value
                scaled_boxes = boxes * torch.as_tensor(
                    [ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32, device=boxes.device
                )
                new_annotation["boxes"] = scaled_boxes
            elif key == "area":
                area = value
                scaled_area = area * (ratio_width * ratio_height)
                new_annotation["area"] = scaled_area
            elif key == "masks":
                masks = value[:, None]
                masks = [F.resize(mask, target_size, interpolation=interpolation) for mask in masks]
                masks = torch.stack(masks).to(torch.float32)
                masks = masks[:, 0] > threshold
                new_annotation["masks"] = masks
            elif key == "size":
                new_annotation["size"] = target_size
            else:
                new_annotation[key] = value

        return new_annotation

    def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
        image_height, image_width = image_size
        norm_annotation = {}
        for key, value in annotation.items():
            if key == "boxes":
                boxes = value
                boxes = corners_to_center_format(boxes)
                boxes /= torch.as_tensor(
                    [image_width, image_height, image_width, image_height], dtype=torch.float32, device=boxes.device
                )
                norm_annotation[key] = boxes
            else:
                norm_annotation[key] = value
        return norm_annotation

    def _update_annotation_for_padded_image(
        self,
        annotation: Dict,
        input_image_size: Tuple[int, int],
        output_image_size: Tuple[int, int],
        padding,
        update_bboxes,
    ) -> Dict:
        """
        Update the annotation for a padded image.
        """
        new_annotation = {}
        new_annotation["size"] = output_image_size
        ratio_height, ratio_width = (input / output for output, input in zip(output_image_size, input_image_size))

        for key, value in annotation.items():
            if key == "masks":
                masks = value
                masks = F.pad(
                    masks,
                    padding,
                    fill=0,
                )
                masks = safe_squeeze(masks, 1)
                new_annotation["masks"] = masks
            elif key == "boxes" and update_bboxes:
                boxes = value
                boxes *= torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height], device=boxes.device)
                new_annotation["boxes"] = boxes
            elif key == "size":
                new_annotation["size"] = output_image_size
            else:
                new_annotation[key] = value
        return new_annotation

    def pad(
        self,
        image: torch.Tensor,
        padded_size: Tuple[int, int],
        annotation: Optional[Dict[str, Any]] = None,
        update_bboxes: bool = True,
        fill: int = 0,
    ):
        original_size = image.size()[-2:]
        padding_bottom = padded_size[0] - original_size[0]
        padding_right = padded_size[1] - original_size[1]
        if padding_bottom < 0 or padding_right < 0:
            raise ValueError(
                f"Padding dimensions are negative. Please make sure that the padded size is larger than the "
                f"original size. Got padded size: {padded_size}, original size: {original_size}."
            )
        if original_size != padded_size:
            padding = [0, 0, padding_right, padding_bottom]
            image = F.pad(image, padding, fill=fill)
            if annotation is not None:
                annotation = self._update_annotation_for_padded_image(
                    annotation, original_size, padded_size, padding, update_bboxes
                )

        # Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
        pixel_mask = torch.zeros(padded_size, dtype=torch.int64, device=image.device)
        pixel_mask[: original_size[0], : original_size[1]] = 1

        return image, pixel_mask, annotation

    @auto_docstring
    def preprocess(
        self,
        images: ImageInput,
        annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
        masks_path: Optional[Union[str, pathlib.Path]] = None,
        **kwargs: Unpack[GroundingDinoFastImageProcessorKwargs],
    ) -> BatchFeature:
        r"""
        annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
            List of annotations associated with the image or batch of images. If annotation is for object
            detection, the annotations should be a dictionary with the following keys:
            - "image_id" (`int`): The image id.
            - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
                dictionary. An image can have no annotations, in which case the list should be empty.
            If annotation is for segmentation, the annotations should be a dictionary with the following keys:
            - "image_id" (`int`): The image id.
            - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
                An image can have no segments, in which case the list should be empty.
            - "file_name" (`str`): The file name of the image.
        masks_path (`str` or `pathlib.Path`, *optional*):
            Path to the directory containing the segmentation masks.
        """
        if "pad_and_return_pixel_mask" in kwargs:
            kwargs["do_pad"] = kwargs.pop("pad_and_return_pixel_mask")
            logger.warning_once(
                "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
                "use `do_pad` instead."
            )

        if "max_size" in kwargs:
            logger.warning_once(
                "The `max_size` argument is deprecated and will be removed in a future version, use"
                " `size['longest_edge']` instead."
            )
            kwargs["size"] = kwargs.pop("max_size")

        return super().preprocess(images, annotations, masks_path, **kwargs)

    def _preprocess(
        self,
        images: List["torch.Tensor"],
        annotations: Optional[Union[AnnotationType, List[AnnotationType]]],
        masks_path: Optional[Union[str, pathlib.Path]],
        return_segmentation_masks: bool,
        do_resize: bool,
        size: SizeDict,
        interpolation: Optional["F.InterpolationMode"],
        do_rescale: bool,
        rescale_factor: float,
        do_normalize: bool,
        do_convert_annotations: bool,
        image_mean: Optional[Union[float, List[float]]],
        image_std: Optional[Union[float, List[float]]],
        do_pad: bool,
        pad_size: Optional[Dict[str, int]],
        format: Optional[Union[str, AnnotationFormat]],
        return_tensors: Optional[Union[str, TensorType]],
        **kwargs,
    ) -> BatchFeature:
        """
        Preprocess an image or a batch of images so that it can be used by the model.
        """
        if annotations is not None and isinstance(annotations, dict):
            annotations = [annotations]

        if annotations is not None and len(images) != len(annotations):
            raise ValueError(
                f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
            )

        format = AnnotationFormat(format)
        if annotations is not None:
            validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)

        if (
            masks_path is not None
            and format == AnnotationFormat.COCO_PANOPTIC
            and not isinstance(masks_path, (pathlib.Path, str))
        ):
            raise ValueError(
                "The path to the directory containing the mask PNG files should be provided as a"
                f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
            )

        data = {}

        processed_images = []
        processed_annotations = []
        pixel_masks = []  # Initialize pixel_masks here
        for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
            # prepare (COCO annotations as a list of Dict -> GROUNDING_DINO target as a single Dict per image)
            if annotations is not None:
                annotation = self.prepare_annotation(
                    image,
                    annotation,
                    format,
                    return_segmentation_masks=return_segmentation_masks,
                    masks_path=masks_path,
                    input_data_format=ChannelDimension.FIRST,
                )

            if do_resize:
                resized_image = self.resize(image, size=size, interpolation=interpolation)
                if annotations is not None:
                    annotation = self.resize_annotation(
                        annotation,
                        orig_size=image.size()[-2:],
                        target_size=resized_image.size()[-2:],
                    )
                image = resized_image
            # Fused rescale and normalize
            image = self.rescale_and_normalize(image, do_rescale, rescale_factor, do_normalize, image_mean, image_std)
            if do_convert_annotations and annotations is not None:
                annotation = self.normalize_annotation(annotation, get_image_size(image, ChannelDimension.FIRST))

            processed_images.append(image)
            processed_annotations.append(annotation)
        images = processed_images
        annotations = processed_annotations if annotations is not None else None

        if do_pad:
            # depends on all resized image shapes so we need another loop
            if pad_size is not None:
                padded_size = (pad_size["height"], pad_size["width"])
            else:
                padded_size = get_max_height_width(images)

            padded_images = []
            padded_annotations = []
            for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
                # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
                if padded_size == image.size()[-2:]:
                    padded_images.append(image)
                    pixel_masks.append(torch.ones(padded_size, dtype=torch.int64, device=image.device))
                    padded_annotations.append(annotation)
                    continue
                image, pixel_mask, annotation = self.pad(
                    image, padded_size, annotation=annotation, update_bboxes=do_convert_annotations
                )
                padded_images.append(image)
                padded_annotations.append(annotation)
                pixel_masks.append(pixel_mask)
            images = padded_images
            annotations = padded_annotations if annotations is not None else None
            data.update({"pixel_mask": torch.stack(pixel_masks, dim=0)})

        data.update({"pixel_values": torch.stack(images, dim=0)})
        encoded_inputs = BatchFeature(data, tensor_type=return_tensors)
        if annotations is not None:
            encoded_inputs["labels"] = [
                BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
            ]
        return encoded_inputs

    def post_process_object_detection(
        self,
        outputs: "GroundingDinoObjectDetectionOutput",
        threshold: float = 0.1,
        target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
    ):
        """
        Converts the raw output of [`GroundingDinoForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
        bottom_right_x, bottom_right_y) format.

        Args:
            outputs ([`GroundingDinoObjectDetectionOutput`]):
                Raw outputs of the model.
            threshold (`float`, *optional*, defaults to 0.1):
                Score threshold to keep object detection predictions.
            target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
                Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
                `(height, width)` of each image in the batch. If unset, predictions will not be resized.

        Returns:
            `List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
            - "scores": The confidence scores for each predicted box on the image.
            - "labels": Indexes of the classes predicted by the model on the image.
            - "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
        """
        batch_logits, batch_boxes = outputs.logits, outputs.pred_boxes
        batch_size = len(batch_logits)

        if target_sizes is not None and len(target_sizes) != batch_size:
            raise ValueError("Make sure that you pass in as many target sizes as images")

        # batch_logits of shape (batch_size, num_queries, num_classes)
        batch_class_logits = torch.max(batch_logits, dim=-1)
        batch_scores = torch.sigmoid(batch_class_logits.values)
        batch_labels = batch_class_logits.indices

        # Convert to [x0, y0, x1, y1] format
        batch_boxes = center_to_corners_format(batch_boxes)

        # Convert from relative [0, 1] to absolute [0, height] coordinates
        if target_sizes is not None:
            batch_boxes = _scale_boxes(batch_boxes, target_sizes)

        results = []
        for scores, labels, boxes in zip(batch_scores, batch_labels, batch_boxes):
            keep = scores > threshold
            scores = scores[keep]
            labels = labels[keep]
            boxes = boxes[keep]
            results.append({"scores": scores, "labels": labels, "boxes": boxes})

        return results


__all__ = ["GroundingDinoImageProcessorFast"]
