o
    Zh	1                     @   sL   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
dgZdS )z$GraniteMoeHybrid model configuration   )PretrainedConfig)rope_config_validation)loggingc                       s   e Zd ZdZdZddiZdgZ								
						
					
												
	
									d! fdd	Zedd  Z	  Z
S )"GraniteMoeHybridConfiga  
    This is the configuration class to store the configuration of a [`GraniteMoeHybridConfig`]. It is used to
    instantiate an GraniteMoeHybrid model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the GraniteMoeHybrid model. Defines the number of different tokens that
            can be represented by the `inputs_ids` passed when calling [`GraniteMoeHybridModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
            Only relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier.
        logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits.
        residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier.
        attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier.
        num_local_experts (`int`, *optional*, defaults to 8): total number of experts.
        num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabling this will also
            allow the model to output the auxiliary loss.
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxialiary loss coefficient
        shared_intermediate_size (`int`, *optional*, defaults to 1024): intermediate size for shared experts.
        position_embedding_type (`str`, *optional*): Positional embedding
            type to be used; defaults to None. Allowed options: `[None, "rope"]`
        layer_types (`List`, *optional*): list of strings to be used as layer types.
            Allowed choices: "mamba", "attention".
        mamba_n_heads (`int`, *optional*, defaults to 128):
            The number of mamba heads used.
        mamba_n_groups (`int`, *optional*, defaults to 1):
            The number of the mamba groups used.
        mamba_d_state (`int`, *optional*, defaults to 256):
            The dimension the mamba latent state space.
        mamba_d_head (`int`, *optional*, defaults to `"auto"`):
            Head embedding dimension size.
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel.
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor (relative to hidden_size) used to determine the mamba intermediate size.
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            The chunks in which to break the sequence when doing prefill/training.
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"])
            of the mamba mixer block.
    ```python
    >>> from transformers import GraniteMoeHybridModel, GraniteMoeHybridConfig

    >>> # Initializing a GraniteMoeHybrid config
    >>> configuration = GraniteMoeHybridConfig()


    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgranitemoehybridlayers_block_typelayer_typesZpast_key_values }      +      Nsilu   {Gz?ư>T      F     @              ?   MbP?         auto   c(           *         sv  || _ || _|| _|| _|| _|| _|d u r|}|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|$| })|d urftdd |D rftd|)| dkrptd|"dkrx|)| }"|"| |)krtd|| _|"| _| | _|!| _|#| _|%| _ |&| _!|'| _"|$| _#|| _$t% j&d
||||d|( | jd	krt'|  d S d S )Nc                 s   s    | ]}|d vV  qdS ))mambaZ	attentionN ).0Z
layer_typer   r   r/var/www/auris/lib/python3.10/site-packages/transformers/models/granitemoehybrid/configuration_granitemoehybrid.py	<genexpr>   s    z2GraniteMoeHybridConfig.__init__.<locals>.<genexpr>z<layer_types must be a list strings in  [`mamba` `attention`]    z4mamba_n_heads must divide mamba_expand * hidden_sizer   zPThe dimensions for the Mamba head state do not match the model intermediate_size)pad_token_idbos_token_ideos_token_idtie_word_embeddingsZroper   )(
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasembedding_multiplierlogits_scalingresidual_multiplierattention_multiplierattention_dropoutnum_local_expertsnum_experts_per_tokoutput_router_logitsrouter_aux_loss_coefshared_intermediate_sizeposition_embedding_typeany
ValueErrormamba_n_headsmamba_d_headmamba_n_groupsmamba_d_statemamba_d_convmamba_chunk_sizemamba_conv_biasmamba_proj_biasmamba_expandr   super__init__r   )*selfr&   r(   r)   r*   r+   r,   r-   r'   r.   r/   r0   r"   r#   r$   r%   r1   r2   r3   r8   r4   r5   r6   r7   r9   r:   r;   r<   r=   r>   r   rA   rC   rD   rB   rE   rI   rF   rG   rH   kwargsZmamba_intermediate	__class__r   r   rK      sr   +
zGraniteMoeHybridConfig.__init__c                 C   s   | j r| j S dg| j S )Nr   )r   r*   )rL   r   r   r   r      s   z(GraniteMoeHybridConfig.layers_block_type)'r   r	   r
   r   r   Nr   r   r   r   TNr   r   Fr   NFr   r   r   r   r   r   r   Fr   r   NNr   r   r   r   r   r   r   TF)__name__
__module____qualname____doc__Z
model_typeZattribute_mapZkeys_to_ignore_at_inferencerK   propertyr   __classcell__r   r   rN   r   r      s`    jpr   N)rS   Zconfiguration_utilsr   Zmodeling_rope_utilsr   utilsr   Z
get_loggerrP   loggerr   __all__r   r   r   r   <module>   s   
 
g