o
    ZhW                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ ddlm Z m!Z!m"Z" dd	l#m$Z$m%Z% e"&e'Z(e$ rdddl)Z)e%d
dG dd de	Z*dgZ+dS )z Image processor class for Donut.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbget_resize_output_image_sizepadresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargslogging)is_vision_availablerequires)Zvision)backendsc                %       s  e Zd ZdZdgZddejddddddddfdedee	e
ef  d	ed
ededededeeef dedeeeee f  deeeee f  ddf fddZ		d'dejde	e
ef deee
ef  deee
ef  dejf
ddZ			d(dejde	e
ef dedeee
ef  deee
ef  dejfddZdd Zejddfdejde	e
ef d	edeee
ef  deee
ef  dejfdd Zejddfdejde	e
ef d	edeee
ef  deee
ef  dejfd!d"Ze dddddddddddddejdfd#edee dee	e
ef  d	ed
ee dee dee dedee dee dee deeeee f  deeeee f  d$eee
ef  dee deee
ef  dejjf"d%d&Z  Z S ))DonutImageProcessora	  
    Constructs a Donut image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_thumbnail (`bool`, *optional*, defaults to `True`):
            Whether to resize the image using thumbnail method.
        do_align_long_axis (`bool`, *optional*, defaults to `False`):
            Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
        do_pad (`bool`, *optional*, defaults to `True`):
            Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a
            random amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
            padded to the largest image size in the batch.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Image standard deviation.
    pixel_valuesTNFgp?	do_resizesizeresampledo_thumbnaildo_align_long_axisdo_pad
do_rescalerescale_factordo_normalize
image_mean	image_stdreturnc                    s   t  jdi | |d ur|nddd}t|ttfr"|d d d }t|}|| _|| _|| _|| _	|| _
|| _|| _|| _|	| _|
d urG|
nt| _|d urS|| _d S t| _d S )Ni 
  i  )heightwidth )super__init__
isinstancetuplelistr	   r#   r$   r%   r&   r'   r(   r)   r*   r+   r   r,   r   r-   )selfr#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   kwargs	__class__r2   _/var/www/auris/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.pyr4   ^   s    zDonutImageProcessor.__init__imagedata_formatinput_data_formatc           
      C   s   t ||d\}}|d |d }}|du rt|}|tjkr!d}	n|tjkr)d}	ntd| ||k r8||ks@||krH||k rHtj|d|	d	}|durSt|||d
}|S )a  
        Align the long axis of the image to the longest axis of the specified size.

        Args:
            image (`np.ndarray`):
                The image to be aligned.
            size (`Dict[str, int]`):
                The size `{"height": h, "width": w}` to align the long axis to.
            data_format (`str` or `ChannelDimension`, *optional*):
                The data format of the output image. If unset, the same format as the input image is used.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.

        Returns:
            `np.ndarray`: The aligned image.
        Zchannel_dimr/   r0   N)r      )rA      zUnsupported data format: r   )ZaxesZinput_channel_dim)	r   r   r   ZLASTFIRST
ValueErrornpZrot90r   )
r8   r=   r$   r>   r?   input_heightinput_widthoutput_heightoutput_widthZrot_axesr2   r2   r<   align_long_axis   s   

z#DonutImageProcessor.align_long_axisrandom_paddingc                 C   s   |d |d }}t ||d\}}	||	 }
|| }|r0tjjd|d d}tjjd|
d d}n|d }|
d }|| }|
| }||f||ff}t||||dS )	a  
        Pad the image to the specified size.

        Args:
            image (`np.ndarray`):
                The image to be padded.
            size (`Dict[str, int]`):
                The size `{"height": h, "width": w}` to pad the image to.
            random_padding (`bool`, *optional*, defaults to `False`):
                Whether to use random padding or not.
            data_format (`str` or `ChannelDimension`, *optional*):
                The data format of the output image. If unset, the same format as the input image is used.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        r/   r0   r@   r   rA   )lowhighrB   r>   r?   )r   rF   randomrandintr   )r8   r=   r$   rL   r>   r?   rI   rJ   rG   rH   Zdelta_widthZdelta_heightpad_toppad_leftZ
pad_bottom	pad_rightpaddingr2   r2   r<   	pad_image   s   zDonutImageProcessor.pad_imagec                 O   s   t d | j|i |S )NzTpad is deprecated and will be removed in version 4.27. Please use pad_image instead.)loggerinforV   )r8   argsr9   r2   r2   r<   r      s   
zDonutImageProcessor.padc                 K   s   t ||d\}}|d |d }	}
t||	}t||
}||kr%||kr%|S ||kr2t|| | }n||kr>t|| | }t|f||f|d||d|S )as  
        Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
        corresponding dimension of the specified size.

        Args:
            image (`np.ndarray`):
                The image to be resized.
            size (`Dict[str, int]`):
                The size `{"height": h, "width": w}` to resize the image to.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                The resampling filter to use.
            data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
                The data format of the output image. If unset, the same format as the input image is used.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        r@   r/   r0   g       @)r$   r%   Zreducing_gapr>   r?   )r   minintr   )r8   r=   r$   r%   r>   r?   r9   rG   rH   rI   rJ   r/   r0   r2   r2   r<   	thumbnail   s*   

zDonutImageProcessor.thumbnailc           
      K   sH   t |}t|d |d }t||d|d}t|f||||d|}	|	S )a  
        Resizes `image` to `(height, width)` specified by `size` using the PIL library.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        r/   r0   F)r$   Zdefault_to_squarer?   )r$   r%   r>   r?   )r	   rZ   r   r   )
r8   r=   r$   r%   r>   r?   r9   Zshortest_edgeZoutput_sizeZresized_imager2   r2   r<   r     s    zDonutImageProcessor.resizeimagesreturn_tensorsc                    s4  |dur|nj }durnjtttfr ddd tdur*nj|dur3|nj}|dur<|nj}|durE|nj	}|	durN|	nj
}	durWnj|dur`|nj}durinjdurrnjt|}t|stdt|	|||d
 dd |D }dd |D }|	rt|d rtd	 du rt|d |rfd
d|D }|rχfdd|D }|r܇fdd|D }|rfdd|D }|	rfdd|D }|rfdd|D } fdd|D }d|i}t||dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
                size["width"]) with the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
                Whether to resize the image using thumbnail method.
            do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
                Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
            do_pad (`bool`, *optional*, defaults to `self.do_pad`):
                Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
                amount of padding on each size, up to the largest image size in the batch. Otherwise, all images are
                padded to the largest image size in the batch.
            random_padding (`bool`, *optional*, defaults to `self.random_padding`):
                Whether to use random padding when padding the image. If `True`, each image in the batch with be padded
                with a random amount of padding on each side up to the size of the largest image in the batch.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image pixel values.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: defaults to the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr1   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r)   r*   r+   r,   r-   r(   Zsize_divisibilityr#   r$   r%   c                 S      g | ]}t |qS r2   )r
   .0r=   r2   r2   r<   
<listcomp>      z2DonutImageProcessor.preprocess.<locals>.<listcomp>c                 S   r_   r2   )r   r`   r2   r2   r<   rb     rc   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                       g | ]
}j | d qS ))r$   r?   )rK   r`   r?   r8   r$   r2   r<   rb         c                       g | ]}j | d qS ))r=   r$   r%   r?   )r   r`   )r?   r%   r8   r$   r2   r<   rb         c                    rd   ))r=   r$   r?   )r\   r`   re   r2   r<   rb     rf   c                    rg   ))r=   r$   rL   r?   )rV   r`   )r?   rL   r8   r$   r2   r<   rb     s    c                    s   g | ]
}j | d qS ))r=   scaler?   )Zrescaler`   )r?   r*   r8   r2   r<   rb     s    c                    s   g | ]}j | d qS ))r=   meanZstdr?   )	normalizer`   )r,   r-   r?   r8   r2   r<   rb     rh   c                    s   g | ]	}t | d qS )rC   )r   r`   rO   r2   r<   rb     s    r"   )dataZtensor_type)r#   r$   r5   r6   r7   r	   r%   r&   r'   r(   r)   r*   r+   r,   r-   r   r   rE   r   r   rW   Zwarning_oncer   r   )r8   r]   r#   r$   r%   r&   r'   r(   rL   r)   r*   r+   r,   r-   r^   r>   r?   rl   r2   )	r>   r,   r-   r?   rL   r%   r*   r8   r$   r<   
preprocess7  s   KzDonutImageProcessor.preprocess)NN)FNN)!__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strr[   r   floatr   r4   rF   Zndarrayr   rK   rV   r   ZBICUBICr\   r   r   rD   r   r   PILZImagerm   __classcell__r2   r2   r:   r<   r!   6   s0   $
	
'

3

*

6

'	
r!   ),rq   typingr   r   r   r   numpyrF   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Zutils.import_utilsr   r   Z
get_loggerrn   rW   ru   r!   __all__r2   r2   r2   r<   <module>   s"   8
   
)