o
    ZŽh™  ã                   @   s@   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZdgZ	dS )z*Donut Swin Transformer model configurationé   )ÚPretrainedConfig)Úloggingc                       sX   e Zd ZdZdZdddœZdddd	g d
¢g d¢ddddddddddf‡ fdd„	Z‡  ZS )ÚDonutSwinConfiga  
    This is the configuration class to store the configuration of a [`DonutSwinModel`]. It is used to instantiate a
    Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Donut
    [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.

    Example:

    ```python
    >>> from transformers import DonutSwinConfig, DonutSwinModel

    >>> # Initializing a Donut naver-clova-ix/donut-base style configuration
    >>> configuration = DonutSwinConfig()

    >>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration
    >>> model = DonutSwinModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```z
donut-swinÚ	num_headsÚ
num_layers)Znum_attention_headsZnum_hidden_layerséà   é   r   é`   )é   r
   é   r
   )r   r   é   é   é   g      @Tg        gš™™™™™¹?ZgeluFg{®Gáz”?gñhãˆµøä>c                    sš   t ƒ jdi |¤Ž || _|| _|| _|| _|| _t|ƒ| _|| _	|| _
|| _|	| _|
| _|| _|| _|| _|| _|| _|| _t|dt|ƒd   ƒ| _d S )Nr
   é   © )ÚsuperÚ__init__Ú
image_sizeÚ
patch_sizeÚnum_channelsÚ	embed_dimÚdepthsÚlenr   r   Úwindow_sizeÚ	mlp_ratioÚqkv_biasÚhidden_dropout_probÚattention_probs_dropout_probÚdrop_path_rateÚ
hidden_actÚuse_absolute_embeddingsÚlayer_norm_epsÚinitializer_rangeÚintZhidden_size)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r"   r!   Úkwargs©Ú	__class__r   úa/var/www/auris/lib/python3.10/site-packages/transformers/models/donut/configuration_donut_swin.pyr   [   s&   
zDonutSwinConfig.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZattribute_mapr   Ú__classcell__r   r   r&   r(   r      s.    ;þïr   N)
r,   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr)   Úloggerr   Ú__all__r   r   r   r(   Ú<module>   s   

o