o
    ZŽhW  ã                   @   s@   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZdgZ	dS )zQDQBERT model configurationé   )ÚPretrainedConfig)Úloggingc                       sF   e Zd ZdZdZ											
						
d‡ fdd„	Z‡  ZS )ÚQDQBertConfigaÃ  
    This is the configuration class to store the configuration of a [`QDQBertModel`]. It is used to instantiate an
    QDQBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the BERT
    [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the QDQBERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`QDQBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`QDQBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.

    Examples:

    ```python
    >>> from transformers import QDQBertModel, QDQBertConfig

    >>> # Initializing a QDQBERT google-bert/bert-base-uncased style configuration
    >>> configuration = QDQBertConfig()

    >>> # Initializing a model from the google-bert/bert-base-uncased style configuration
    >>> model = QDQBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zqdqberté:w  é   é   é   Úgeluçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=Té   é    c                    sl   t ƒ jd|||dœ|¤Ž || _|	| _|| _|| _|| _|| _|| _|| _	|| _
|| _|
| _|| _|| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_id© )ÚsuperÚ__init__Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚtype_vocab_sizeÚlayer_norm_epsÚ	use_cache)Úselfr   r   r   r   r   r   r   r   r   r!   r    r"   r#   r   r   r   Úkwargs©Ú	__class__r   úk/var/www/auris/lib/python3.10/site-packages/transformers/models/deprecated/qdqbert/configuration_qdqbert.pyr   V   s   
zQDQBertConfig.__init__)r   r   r   r   r   r	   r
   r
   r   r   r   r   Tr   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r&   r(   r      s(    ;ïr   N)
r,   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr)   Úloggerr   Ú__all__r   r   r   r(   Ú<module>   s   

c