o
    Zh?                     @   sH   d Z ddlZddlmZ ddlmZ eeZG dd deZ	dgZ
dS )zData2VecText configuration    N   )PretrainedConfig)loggingc                       s   e Zd ZdZdZ														
																																d$ fd d!	Zed"d# Z  ZS )%Data2VecAudioConfiga)  
    This is the configuration class to store the configuration of a [`Data2VecAudioModel`]. It is used to instantiate
    an Data2VecAudio model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Data2VecAudio
    [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32):
            Vocabulary size of the Data2VecAudio model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`Data2VecAudioModel`] or [`TFData2VecAudioModel`]. Vocabulary size
            of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the
            forward method of [`Data2VecAudioModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        activation_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for activations inside the fully connected layer.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        final_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the final projection layer of [`Data2VecAudioForCTC`].
        layerdrop (`float`, *optional*, defaults to 0.1):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        feat_proj_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for output of the feature encoder.
        feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procedure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
            reasoning from the probability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procedure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
            the axis. If reasoning from the probability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
        ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
            Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
            instance of [`Data2VecAudioForCTC`].
        ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
            Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
            occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
            of [`Data2VecAudioForCTC`].
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`Data2VecAudioForSequenceClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification.
        tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
            A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
            module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
        tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
            *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
        tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
            A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
            *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
        xvector_output_dim (`int`, *optional*, defaults to 512):
            Dimensionality of the *XVector* embedding vectors.
        add_adapter (`bool`, *optional*, defaults to `False`):
            Whether a convolutional network should be stacked on top of the Data2VecAudio Encoder. Can be very useful
            for warm-starting Data2VecAudio for SpeechEncoderDecoder models.
        adapter_kernel_size (`int`, *optional*, defaults to 3):
            Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        adapter_stride (`int`, *optional*, defaults to 2):
            Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        num_adapter_layers (`int`, *optional*, defaults to 3):
            Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
            True`.
        output_hidden_size (`int`, *optional*):
            Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
            if `add_adapter is True`.

    Example:

    ```python
    >>> from transformers import Data2VecAudioConfig, Data2VecAudioModel

    >>> # Initializing a Data2VecAudio facebook/data2vec-audio-base-960h style configuration
    >>> configuration = Data2VecAudioConfig()

    >>> # Initializing a model (with random weights) from the facebook/data2vec-audio-base-960h style configuration
    >>> model = Data2VecAudioModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```zdata2vec-audio             gelu皙?        {Gz?h㈵>   r   r   r   r   r   r         r   r   r   r   r   
   r   r   r   r   r   r   F      r   皙?r   r   r   sum   r   r   r   r   i  r   r   r      r   r   r   r   r   r   r   r   r   Nc-           .         s  t  jdi |-|%|&|'d || _|| _t|| _t|| _t|| _|| _|| _	|| _
|| _t| j| _|| _|| _|| _|| _|| _|	| _|| _|
| _|| _|| _|| _|| _|| _|| _t| j| jksxt| j| jksxt| j| jkrtdt| j dt| j dt| j d|| _|| _|| _|| _ || _!|| _"|| _#|| _$|(| _%|)| _&|*| _'|+| _(|,p|| _)| | _*t|!| _+t|"| _,t|#| _-|$| _.d S )N)pad_token_idbos_token_ideos_token_idzConfiguration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) = z`, `len(config.conv_stride) = z`, `len(config.conv_kernel) = z`. )/super__init__hidden_sizefeat_extract_activationlistconv_dimconv_strideconv_kernel	conv_biasnum_conv_pos_embeddingsnum_conv_pos_embedding_groupsconv_pos_kernel_sizelenZnum_feat_extract_layersnum_hidden_layersintermediate_size
hidden_actnum_attention_headshidden_dropoutattention_dropoutactivation_dropoutfeat_proj_dropoutfinal_dropout	layerdroplayer_norm_epsinitializer_range
vocab_sizeuse_weighted_layer_sum
ValueErrormask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthmask_feature_min_masksctc_loss_reductionctc_zero_infinityadd_adapteradapter_kernel_sizeadapter_stridenum_adapter_layersoutput_hidden_sizeclassifier_proj_sizetdnn_dimtdnn_kerneltdnn_dilationxvector_output_dim).selfr<   r%   r0   r3   r1   r2   r4   r6   r5   r7   r8   r9   r;   r:   r&   r(   r)   r*   r+   r-   r.   r,   r?   r@   rA   rB   rC   rD   rE   rF   r=   rL   rM   rN   rO   rP   r   r    r!   rG   rH   rI   rJ   rK   kwargs	__class__r"   h/var/www/auris/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.pyr$      sn   0







zData2VecAudioConfig.__init__c                 C   s   t | jS )N)mathprodr)   )rQ   r"   r"   rU   inputs_to_logits_ratio  s   z*Data2VecAudioConfig.inputs_to_logits_ratio),r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r
   r   r   r   Fr   r   r   r   r   r   r   r   r   r   FFr   r   r   r   r   r   r   r   Fr   r   r   N)	__name__
__module____qualname____doc__Z
model_typer$   propertyrX   __classcell__r"   r"   rS   rU   r      sf     rr   )r\   rV   Zconfiguration_utilsr   utilsr   Z
get_loggerrY   loggerr   __all__r"   r"   r"   rU   <module>   s   
  
