o
    Zh>                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZm Z m!Z! dd	l"m#Z# e  r[ddl$Z$e!%e&Z'e#d
dG dd de	Z(dgZ)dS )z#Image processor class for ConvNeXT.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)center_cropget_resize_output_image_sizeresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availablelogging)requires)Zvision)backendsc                       s  e Zd ZdZdgZdddejdddddf	dedee	e
ef  dee d	ed
edeeef dedeeeee f  deeeee f  ddf fddZejddfdejde	e
ef ded	edeee
ef  deee
ef  dejfddZe ddddddddddejdfdedee dee	e
ef  dee d	ed
ee dee dee deeeee f  deeeee f  deee
ef  dedeee
ef  dejjfddZ  ZS )ConvNextImageProcessora;
  
    Constructs a ConvNeXT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden
            by `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
            Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is
            resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will
            be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to
            `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can
            be overridden by `size` in the `preprocess` method.
        crop_pct (`float` *optional*, defaults to 224 / 256):
            Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be
            overridden by `crop_pct` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizecrop_pctresample
do_rescalerescale_factordo_normalize
image_mean	image_stdreturnc
                    s   t  jdi |
 |d ur|nddi}t|dd}|| _|| _|d ur%|nd| _|| _|| _|| _|| _	|d ur:|nt
| _|	d urF|	| _d S t| _d S )Nshortest_edge  Fdefault_to_squareg      ? )super__init__r	   r!   r"   r#   r$   r%   r&   r'   r   r(   r   r)   )selfr!   r"   r#   r$   r%   r&   r'   r(   r)   kwargs	__class__r/   e/var/www/auris/lib/python3.10/site-packages/transformers/models/convnext/image_processing_convnext.pyr1   [   s   zConvNextImageProcessor.__init__imagedata_formatinput_data_formatc                 K   s   t |dd}d|vrtd|  |d }|dk rDt|| }	t||	d|d}
td||
|||d|}td|||f||d|S t|f||f|||d	|S )a  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If
                `size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`.
                Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`,
                after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`.
            crop_pct (`float`):
                Percentage of the image to crop. Only has an effect if size < 384.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred from the input
                image.
        Fr-   r+   z6Size dictionary must contain 'shortest_edge' key. Got r,   )r"   r.   r9   )r7   r"   r$   r8   r9   )r7   r"   r8   r9   )r"   r$   r8   r9   Nr/   )r	   
ValueErrorkeysintr   r   r
   )r2   r7   r"   r#   r$   r8   r9   r3   r+   Zresize_shortest_edgeZresize_sizer/   r/   r6   r   w   sH   		zConvNextImageProcessor.resizeimagesreturn_tensorsc              
      s  |dur|nj } dur nj durnj|dur!|nj}dur*nj|dur3|nj}dur<njdurEnjdurNnjt	ddt
|}t|sctdt|||d dd |D }|rt|d rtd	 du rt|d |r fd
d|D }|rfdd|D }|rfdd|D }fdd|D }d|i}t||dS )aW  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
                is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
                image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
                `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
            crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
                Percentage of the image to crop if size < 384.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr-   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r%   r&   r'   r(   r)   r!   r"   r$   c                 S   s   g | ]}t |qS r/   )r   .0r7   r/   r/   r6   
<listcomp>  s    z5ConvNextImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c              	      s    g | ]}j | d qS ))r7   r"   r#   r$   r9   )r   r?   )r#   r9   r$   r2   r"   r/   r6   rA   *  s    
c                    s   g | ]
}j | d qS ))r7   scaler9   )Zrescaler?   )r9   r&   r2   r/   r6   rA   2  s    c                    s   g | ]}j | d qS ))r7   meanZstdr9   )	normalizer?   )r(   r)   r9   r2   r/   r6   rA   8  s    c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   r?   )r8   r9   r/   r6   rA   =  s    r    )dataZtensor_type)r!   r#   r$   r%   r&   r'   r(   r)   r"   r	   r   r   r:   r   r   loggerZwarning_oncer   r   )r2   r=   r!   r"   r#   r$   r%   r&   r'   r(   r)   r>   r8   r9   rE   r/   )	r#   r8   r(   r)   r9   r$   r&   r2   r"   r6   
preprocess   sb   Az!ConvNextImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strr<   floatr   r   r1   ZBICUBICnpZndarrayr   r   r   ZFIRSTr   r   PILZImagerG   __classcell__r/   r/   r4   r6   r   4   s    #
	
!
	
E	
r   )*rK   typingr   r   r   r   numpyrO   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   Zutils.import_utilsr   rP   Z
get_loggerrH   rF   r   __all__r/   r/   r/   r6   <module>   s    4
  
