o
    ZhB                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZ ee Z!e rTddl"Z"G d	d
 d
e	Z#d
gZ$dS )z$Image processor class for Chameleon.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)get_resize_output_image_sizeresizeto_channel_dimension_format)	ChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_flat_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingc                #       s  e Zd ZdZdgZddejjddddddddfdede	e
eef  ded	ed
e	e
eef  dedeeef dede	eeee f  de	eeee f  deddf fddZejddfdejde
eef dede	eeef  de	eeef  dejfddZe ddddddddddddejdfdede	e de	e
eef  ded	e	e d
e	e de	e de	e de	e de	eeee f  de	eeee f  de	e de	eeef  de	e de	eeef  dejjf ddZdedefddZ  ZS )ChameleonImageProcessora
  
    Constructs a Chameleon image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 512}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to 1):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
            `preprocess` method.
        crop_size (`Dict[str, int]` *optional*, defaults to {"height": 512, "width": 512}):
            Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
            method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to 0.0078):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[1.0, 1.0, 1.0]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[1.0, 1.0, 1.0]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTNgq?	do_resizesizeresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc                    s   t  jd
i | |d ur|nddi}t|dd}|d ur|nddd}t|ddd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	d urI|	ng d	| _|
d urT|
ng d	| _|| _d S )Nshortest_edgei   F)default_to_square)heightwidthTr    )r)   
param_name)      ?r-   r-    )super__init__r	   r   r   r   r   r    r!   r"   r#   r$   r%   r&   )selfr   r   r   r   r    r!   r"   r#   r$   r%   r&   kwargs	__class__r.   g/var/www/auris/lib/python3.10/site-packages/transformers/models/chameleon/image_processing_chameleon.pyr0   X   s    
z ChameleonImageProcessor.__init__imagedata_formatinput_data_formatc           	      K   sn   d}d|v r|d }d}nd|v rd|v r|d |d f}nt dt||||d}t|f||||d|S )	aZ  
        Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
        resized to keep the input aspect ratio.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Tr(   Fr*   r+   zASize must contain either 'shortest_edge' or 'height' and 'width'.)r   r)   r8   )r   r   r7   r8   )
ValueErrorr
   r   )	r1   r6   r   r   r7   r8   r2   r)   Zoutput_sizer.   r.   r5   r   z   s.   zChameleonImageProcessor.resizeimagesreturn_tensorsc                    s  |dur|nj }|dur|nj}t|ddd}|dur|nj}|dur(|nj}|dur1|nj}t|ddd}|durA|nj}|durJ|nj}|	durS|	nj}	|
dur\|
nj	}
|dure|nj
}|durn|nj}t|}t|s}tdt|||	|
||||||d
 |rfd	d
|D }dd
 |D }|rt|d rtd du rt|d g }|D ]1}|rňj|||d}|rψj||d}|rوj||d}|	rj||
|d}|| q fdd
|D }d|i}t||dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr   F)r,   r)   r    TzkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r!   r"   r#   r$   r%   r   r    r   r   r   c                    s   g | ]}  |qS r.   )
blend_rgba.0r6   )r1   r.   r5   
<listcomp>  s    z6ChameleonImageProcessor.preprocess.<locals>.<listcomp>c                 S   s   g | ]}t |qS r.   )r   r=   r.   r.   r5   r?     s    r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)r6   r   r   r8   )r6   r   r8   )r6   scaler8   )r6   meanZstdr8   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   r=   )r7   r8   r.   r5   r?   4  s    r   )dataZtensor_type)r   r   r	   r   r   r    r!   r"   r#   r$   r%   r&   r   r   r9   r   r   loggerZwarning_oncer   r   Zcenter_cropZrescale	normalizeappendr   )r1   r:   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r;   r7   r8   Z
all_imagesr6   rB   r.   )r7   r8   r1   r5   
preprocess   sr   Fz"ChameleonImageProcessor.preprocessc                 C   s   t |tjjs	|S |jdkr|S t|d}|dddddf dk  s,|dS |dddddf d }d|ddddtjf  d |ddddtjf |ddddddf   }tj	|
ddS )	a  
        Convert image to RGB by blending the transparency layer if it's in RGBA format.
        If image is not `PIL.Image`, it si simply returned without modifications.

        Args:
            image (`ImageInput`):
                Image to convert.
        RGBZRGBANr      g     o@   Zuint8)
isinstancePILImagemodenparrayconvertanyZnewaxisZ	fromarrayZastype)r1   r6   Zimg_rgbaalphaZimg_rgbr.   r.   r5   r<   <  s   


Rz"ChameleonImageProcessor.blend_rgba)__name__
__module____qualname____doc__Zmodel_input_namesrK   rL   ZLANCZOSboolr   r   strintr   r   floatr   r0   ZBICUBICrN   Zndarrayr   r   r   ZFIRSTr   r   rF   r<   __classcell__r.   r.   r3   r5   r   /   s    &
	
&

1	
 r   )%rV   typingr   r   r   r   numpyrN   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   utilsr   r   r   r   Z
get_loggerrS   rC   rK   r   __all__r.   r.   r.   r5   <module>   s   ,
  
+