o
    ZŽh  ã                   @   s@   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZdgZ	dS )zBros model configurationé   )ÚPretrainedConfig)Úloggingc                       sH   e Zd ZdZdZ											
							d‡ fdd„	Z‡  ZS )Ú
BrosConfiga  
    This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to
    instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Bros
    [jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            The index of the padding token in the token vocabulary.
        dim_bbox (`int`, *optional*, defaults to 8):
            The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1)
        bbox_scale (`float`, *optional*, defaults to 100.0):
            The scale factor of the bounding box coordinates.
        n_relations (`int`, *optional*, defaults to 1):
            The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the classifier head.


    Examples:

    ```python
    >>> from transformers import BrosConfig, BrosModel

    >>> # Initializing a BROS jinho8345/bros-base-uncased style configuration
    >>> configuration = BrosConfig()

    >>> # Initializing a model from the jinho8345/bros-base-uncased style configuration
    >>> model = BrosModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zbrosé:w  é   é   é   Úgeluçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=é    é   ç      Y@é   c                    sr   t ƒ jd|||||||||	|
|||dœ|¤Ž || _|| _|| _| jd | _| j| j | _| j| j | _	|| _
d S )N)Ú
vocab_sizeÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚmax_position_embeddingsÚtype_vocab_sizeÚinitializer_rangeÚlayer_norm_epsÚpad_token_idé   © )ÚsuperÚ__init__Údim_bboxÚ
bbox_scaleÚn_relationsr   Zdim_bbox_sinusoid_emb_2dZdim_bbox_sinusoid_emb_1dr   Zdim_bbox_projectionÚclassifier_dropout_prob)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r$   r%   r&   r'   Úkwargs©Ú	__class__r!   úZ/var/www/auris/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.pyr#   [   s0   óò
zBrosConfig.__init__)r   r   r   r   r   r	   r
   r
   r   r   r   r   r   r   r   r   r
   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer#   Ú__classcell__r!   r!   r*   r,   r      s*    @îr   N)
r0   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr-   Úloggerr   Ú__all__r!   r!   r!   r,   Ú<module>   s   

r