o
    ]ZŽhw8  ã                   @   s   d Z ddlZddlZg d¢Zejdddddd„ƒZejdddddd	„ƒZejddddd
d„ƒZej	j
 d¡ejdddddddœdd„ƒƒZej	 d¡ej	 d¡ejdddiidddœdd„ƒƒƒZej	j
 d¡ejddddddddœdd„ƒƒZdS )z3Provides explicit constructions of expander graphs.é    N)Úmargulis_gabber_galil_graphÚchordal_cycle_graphÚpaley_graphÚmaybe_regular_expanderÚis_regular_expanderÚrandom_regular_expander_graphT)ZgraphsZreturns_graphc                 C   sÔ   t jd|t jd}| ¡ s| ¡ sd}t  |¡‚tjt| ƒddD ]=\}}|d|  |  |f|d| d  |  |f||d|  |  f||d| d  |  ffD ]\}}| 	||f||f¡ qOq!d| › d|j
d	< |S )
aÐ  Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.

    The undirected MultiGraph is regular with degree `8`. Nodes are integer
    pairs. The second-largest eigenvalue of the adjacency matrix of the graph
    is at most `5 \sqrt{2}`, regardless of `n`.

    Parameters
    ----------
    n : int
        Determines the number of nodes in the graph: `n^2`.
    create_using : NetworkX graph constructor, optional (default MultiGraph)
       Graph type to create. If graph instance, then cleared before populated.

    Returns
    -------
    G : graph
        The constructed undirected multigraph.

    Raises
    ------
    NetworkXError
        If the graph is directed or not a multigraph.

    r   ©Údefaultú0`create_using` must be an undirected multigraph.é   )Úrepeaté   zmargulis_gabber_galil_graph(ú)Úname)ÚnxÚempty_graphÚ
MultiGraphÚis_directedÚis_multigraphÚNetworkXErrorÚ	itertoolsÚproductÚrangeÚadd_edgeÚgraph)ÚnÚcreate_usingÚGÚmsgÚxÚyÚuÚv© r#   úL/var/www/auris/lib/python3.10/site-packages/networkx/generators/expanders.pyr   1   s   
üúr   c           	      C   s¤   t jd|t jd}| ¡ s| ¡ sd}t  |¡‚t| ƒD ]*}|d |  }|d |  }|dkr6t|| d | ƒnd}|||fD ]}| ||¡ q=qd| › d|j	d< |S )	u  Returns the chordal cycle graph on `p` nodes.

    The returned graph is a cycle graph on `p` nodes with chords joining each
    vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
    3-regular expander [1]_.

    `p` *must* be a prime number.

    Parameters
    ----------
    p : a prime number

        The number of vertices in the graph. This also indicates where the
        chordal edges in the cycle will be created.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    Returns
    -------
    G : graph
        The constructed undirected multigraph.

    Raises
    ------
    NetworkXError

        If `create_using` indicates directed or not a multigraph.

    References
    ----------

    .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
           invariant measures", volume 125 of Progress in Mathematics.
           BirkhÃ¤user Verlag, Basel, 1994.

    r   r   r
   r   r   zchordal_cycle_graph(r   r   )
r   r   r   r   r   r   r   Úpowr   r   )	Úpr   r   r   r   ÚleftÚrightZchordr    r#   r#   r$   r   \   s   '
ÿr   c                    s‚   t jd|t jd}| ¡ rd}t  |¡‚‡ fdd„tdˆ ƒD ƒ}tˆ ƒD ]}|D ]}| ||| ˆ  ¡ q(q$dˆ › d|jd	< |S )
a%  Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.

    The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
    if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.

    If $p \equiv 1  \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
    only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.

    If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
    is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.

    Note that a more general definition of Paley graphs extends this construction
    to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
    This construction requires to compute squares in general finite fields and is
    not what is implemented here (i.e `paley_graph(25)` does not return the true
    Paley graph associated with $5^2$).

    Parameters
    ----------
    p : int, an odd prime number.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    Returns
    -------
    G : graph
        The constructed directed graph.

    Raises
    ------
    NetworkXError
        If the graph is a multigraph.

    References
    ----------
    Chapter 13 in B. Bollobas, Random Graphs. Second edition.
    Cambridge Studies in Advanced Mathematics, 73.
    Cambridge University Press, Cambridge (2001).
    r   r   z&`create_using` cannot be a multigraph.c                    s(   h | ]}|d  ˆ  dkr|d  ˆ  ’qS )r   r   r#   )Ú.0r   ©r&   r#   r$   Ú	<setcomp>Î   s   ( zpaley_graph.<locals>.<setcomp>r   zpaley(r   r   )r   r   ZDiGraphr   r   r   r   r   )r&   r   r   r   Z
square_setr   Zx2r#   r*   r$   r   œ   s   *
ÿr   Úseedéd   ©r   Ú	max_triesr,   c                   sP  ddl }| dk rt d¡‚|dkst d¡‚|d dks!t d¡‚| d |ks5t d|d › d	| › d
¡‚t | |¡}| dk rA|S g }tƒ ‰ t|d ƒD ]T}|}	tˆ ƒ|d |  kr |	d8 }	| | d ¡ ¡ }
|
 	| d ¡ ‡ fdd„tj
j|
ddD ƒ}t|ƒ| kr| 	|
¡ ˆ  |¡ |	dkr–t d¡‚tˆ ƒ|d |  ksZqL| ˆ ¡ |S )u­  Utility for creating a random regular expander.

    Returns a random $d$-regular graph on $n$ nodes which is an expander
    graph with very good probability.

    Parameters
    ----------
    n : int
      The number of nodes.
    d : int
      The degree of each node.
    create_using : Graph Instance or Constructor
      Indicator of type of graph to return.
      If a Graph-type instance, then clear and use it.
      If a constructor, call it to create an empty graph.
      Use the Graph constructor by default.
    max_tries : int. (default: 100)
      The number of allowed loops when generating each independent cycle
    seed : (default: None)
      Seed used to set random number generation state. See :ref`Randomness<randomness>`.

    Notes
    -----
    The nodes are numbered from $0$ to $n - 1$.

    The graph is generated by taking $d / 2$ random independent cycles.

    Joel Friedman proved that in this model the resulting
    graph is an expander with probability
    $1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_

    Examples
    --------
    >>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020)

    Returns
    -------
    G : graph
        The constructed undirected graph.

    Raises
    ------
    NetworkXError
        If $d % 2 != 0$ as the degree must be even.
        If $n - 1$ is less than $ 2d $ as the graph is complete at most.
        If max_tries is reached

    See Also
    --------
    is_regular_expander
    random_regular_expander_graph

    References
    ----------
    .. [1] Joel Friedman,
       A Proof of Alonâ€™s Second Eigenvalue Conjecture and Related Problems, 2004
       https://arxiv.org/abs/cs/0405020

    r   Nr   zn must be a positive integerr   z$d must be greater than or equal to 2zd must be evenzNeed n-1>= d to have room for z independent cycles with z nodesc                    s0   h | ]\}}||fˆ vr||fˆ vr||f’qS r#   r#   )r)   r!   r"   ©Úedgesr#   r$   r+   9  s
    þz)maybe_regular_expander.<locals>.<setcomp>T)Zcyclicz-Too many iterations in maybe_regular_expander)Únumpyr   r   r   Úsetr   ÚlenZpermutationÚtolistÚappendÚutilsÚpairwiseÚupdateZadd_edges_from)r   Údr   r/   r,   Únpr   ZcyclesÚiÚ
iterationsÚcycleZ	new_edgesr#   r0   r$   r   ×   sD   ?


ÿ
þ


í€
r   ZdirectedZ
multigraphr   Úweightr   )Zpreserve_edge_attrs©Úepsilonc          	      C   sŽ   ddl }ddlm} |dk rt d¡‚t | ¡sdS tj | j¡\}}tj	| t
d}||dddd	}t|ƒ}tt|ƒd| |d
 ¡ | k ƒS )a  Determines whether the graph G is a regular expander. [1]_

    An expander graph is a sparse graph with strong connectivity properties.

    More precisely, this helper checks whether the graph is a
    regular $(n, d, \lambda)$-expander with $\lambda$ close to
    the Alon-Boppana bound and given by
    $\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_

    In the case where $\epsilon = 0$ then if the graph successfully passes the test
    it is a Ramanujan graph. [3]_

    A Ramanujan graph has spectral gap almost as large as possible, which makes them
    excellent expanders.

    Parameters
    ----------
    G : NetworkX graph
    epsilon : int, float, default=0

    Returns
    -------
    bool
        Whether the given graph is a regular $(n, d, \lambda)$-expander
        where $\lambda = 2 \sqrt{d - 1} + \epsilon$.

    Examples
    --------
    >>> G = nx.random_regular_expander_graph(20, 4)
    >>> nx.is_regular_expander(G)
    True

    See Also
    --------
    maybe_regular_expander
    random_regular_expander_graph

    References
    ----------
    .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
    .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
    .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph

    r   N)Úeigshzepsilon must be non negativeF)ZdtypeZLMr   )ÚwhichÚkZreturn_eigenvectorsr   )r2   Zscipy.sparse.linalgrB   r   r   Z
is_regularr7   Zarbitrary_elementZdegreeZadjacency_matrixÚfloatÚminÚboolÚabsÚsqrt)	r   rA   r;   rB   Ú_r:   ÚAZlamsZlambda2r#   r#   r$   r   L  s   1

"r   )rA   r   r/   r,   c                C   s^   t | ||||d}|}t||ds-|d8 }t | ||||d}|dkr't d¡‚t||dr|S )a  Returns a random regular expander graph on $n$ nodes with degree $d$.

    An expander graph is a sparse graph with strong connectivity properties. [1]_

    More precisely the returned graph is a $(n, d, \lambda)$-expander with
    $\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_

    In the case where $\epsilon = 0$ it returns a Ramanujan graph.
    A Ramanujan graph has spectral gap almost as large as possible,
    which makes them excellent expanders. [3]_

    Parameters
    ----------
    n : int
      The number of nodes.
    d : int
      The degree of each node.
    epsilon : int, float, default=0
    max_tries : int, (default: 100)
      The number of allowed loops, also used in the maybe_regular_expander utility
    seed : (default: None)
      Seed used to set random number generation state. See :ref`Randomness<randomness>`.

    Raises
    ------
    NetworkXError
        If max_tries is reached

    Examples
    --------
    >>> G = nx.random_regular_expander_graph(20, 4)
    >>> nx.is_regular_expander(G)
    True

    Notes
    -----
    This loops over `maybe_regular_expander` and can be slow when
    $n$ is too big or $\epsilon$ too small.

    See Also
    --------
    maybe_regular_expander
    is_regular_expander

    References
    ----------
    .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
    .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
    .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph

    r.   r@   r   )r   r:   r   r/   r,   r   z4Too many iterations in random_regular_expander_graph)r   r   r   r   )r   r:   rA   r   r/   r,   r   r=   r#   r#   r$   r   ’  s   8
ÿ
ÿÿùr   )N)Ú__doc__r   Znetworkxr   Ú__all__Z_dispatchabler   r   r   r7   Z
decoratorsZnp_random_stater   Znot_implemented_forr   r   r#   r#   r#   r$   Ú<module>   s*    **?:
s
Cÿ