o
    Zh9K                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	 ddl
mZ ddlmZmZmZ ddlmZmZmZmZ dd	lmZmZmZmZmZmZmZmZmZmZm Z  dd
l!m"Z"m#Z# e	 r]ddl$Z$e#%e&Z'deee  fddZ(G dd deZ)dgZ*dS )z Image processor class for Vivit.    )DictListOptionalUnionN)is_vision_available)
TensorType   )BaseImageProcessorBatchFeatureget_size_dict)get_resize_output_image_sizerescaleresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imageis_valid_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)filter_out_non_signature_kwargsloggingreturnc                 C   sr   t | ttfrt | d ttfrt| d d r| S t | ttfr*t| d r*| gS t| r2| ggS td|  )Nr   z"Could not make batched video from )
isinstancelisttupler   
ValueError)videos r#   _/var/www/auris/lib/python3.10/site-packages/transformers/models/vivit/image_processing_vivit.pymake_batched5   s   0r%   c                #       s  e Zd ZdZdgZddejddddddddfdedee	e
ef  ded	ed
ee	e
ef  dedeeef dededeeeee f  deeeee f  ddf fddZejddfdejde	e
ef dedeee
ef  deee
ef  dejfddZ			d"dejdeeef dedeee
ef  deee
ef  f
ddZdddddddddddejdfdedee dee	e
ef  ded	ee d
ee	e
ef  dee dee dee dee deeeee f  deeeee f  dee deee
ef  dejfddZe ddddddddddddejdfdedee dee	e
ef  ded	ee d
ee	e
ef  dee dee dee dee deeeee f  deeeee f  deee
ef  dedeee
ef  dejjf d d!Z  ZS )#VivitImageProcessoraC  
    Constructs a Vivit image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
            Size of the output image after resizing. The shortest edge of the image will be resized to
            `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overridden by
            `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
            parameter in the `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/127.5`):
            Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
            in the `preprocess` method.
        offset (`bool`, *optional*, defaults to `True`):
            Whether to scale the image in both negative and positive directions. Can be overridden by the `offset` in
            the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNg?	do_resizesizeresampledo_center_crop	crop_size
do_rescalerescale_factoroffsetdo_normalize
image_mean	image_stdr   c                    s   t  jd	i | |d ur|nddi}t|dd}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
d urK|
nt| _|d urW|| _d S t| _d S )
Nshortest_edge   Fdefault_to_square   )heightwidthr,   
param_namer#   )super__init__r   r(   r)   r+   r,   r*   r-   r.   r/   r0   r   r1   r   r2   )selfr(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   kwargs	__class__r#   r$   r=   m   s    zVivitImageProcessor.__init__imagedata_formatinput_data_formatc                 K   sx   t |dd}d|v rt||d d|d}nd|v r&d|v r&|d |d f}n	td|  t|f||||d|S )	a  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
                have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
                shortest edge of length `s` while keeping the aspect ratio of the original image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Fr5   r3   )r6   rD   r8   r9   zDSize must have 'height' and 'width' or 'shortest_edge' as keys. Got )r)   r*   rC   rD   )r   r   r!   keysr   )r>   rB   r)   r*   rC   rD   r?   Zoutput_sizer#   r#   r$   r      s$   zVivitImageProcessor.resizescalec                 K   s(   t |f|||d|}|r|d }|S )a  
        Rescale an image by a scale factor.

        If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
        1/127.5, the image is rescaled between [-1, 1].
            image = image * scale - 1

        If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
            image = image * scale

        Args:
            image (`np.ndarray`):
                Image to rescale.
            scale (`int` or `float`):
                Scale to apply to the image.
            offset (`bool`, *optional*):
                Whether to scale the image in both negative and positive directions.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        )rF   rC   rD      )r   )r>   rB   rF   r/   rC   rD   r?   Zrescaled_imager#   r#   r$   r      s   zVivitImageProcessor.rescalec                 C   s   t |||
|||||||d
 |	r|stdt|}|r%t|r%td |du r-t|}|r8| j||||d}|rB| j|||d}|rM| j	|||	|d}|
rX| j
||||d}t|||d	}|S )
zPreprocesses a single image.)
r-   r.   r0   r1   r2   r+   r,   r(   r)   r*   z0For offset, do_rescale must also be set to True.zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.N)rB   r)   r*   rD   )r)   rD   )rB   rF   r/   rD   )rB   meanZstdrD   )Zinput_channel_dim)r   r!   r   r   loggerZwarning_oncer   r   Zcenter_cropr   	normalizer   )r>   rB   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rC   rD   r#   r#   r$   _preprocess_image   s>   z%VivitImageProcessor._preprocess_imager"   return_tensorsc                    s6  durnj 
dur
nj
durnjdur!njdur*nj	dur3	nj	dur<njdurEnjdurNnjdurWnj	t
dd durf nj t
 dd t|swtdt|} 	
fdd|D }d	|i}t||d
S )a  
        Preprocess an image or batch of images.

        Args:
            videos (`ImageInput`):
                Video frames to preprocess. Expects a single or batch of video frames with pixel values ranging from 0
                to 255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after applying resize.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
                Whether to centre crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after applying the centre crop.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between `[-1 - 1]` if `offset` is `True`, `[0, 1]` otherwise.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            offset (`bool`, *optional*, defaults to `self.offset`):
                Whether to scale the image in both negative and positive directions.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                    - Unset: Use the inferred channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr5   r,   r:   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.c                    s8   g | ]} 	
fd d|D qS )c                    s2   g | ]}j |
 	d qS ))rB   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rC   rD   )rK   ).0Zimgr,   rC   r+   r0   r-   r(   r1   r2   rD   r/   r*   r.   r>   r)   r#   r$   
<listcomp>}  s&    z=VivitImageProcessor.preprocess.<locals>.<listcomp>.<listcomp>r#   )rM   ZvideorN   r#   r$   rO   |  s    $z2VivitImageProcessor.preprocess.<locals>.<listcomp>r'   )dataZtensor_type)r(   r*   r+   r-   r.   r/   r0   r1   r2   r)   r   r,   r   r!   r%   r
   )r>   r"   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rL   rC   rD   rP   r#   rN   r$   
preprocess!  s.   D$zVivitImageProcessor.preprocess)TNN)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strintr   floatr   r=   npZndarrayr   r   r   ZFIRSTr   rK   r   r   PILZImagerQ   __classcell__r#   r#   r@   r$   r&   B   sB   (
	
%

1

+	

>	
r&   )+rU   typingr   r   r   r   numpyrZ   Ztransformers.utilsr   Ztransformers.utils.genericr   Zimage_processing_utilsr	   r
   r   Zimage_transformsr   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r[   Z
get_loggerrR   rI   r%   r&   __all__r#   r#   r#   r$   <module>   s"   4
  
W