o
    Zh4                     @   s   d Z ddlmZmZmZ ddlZddlmZm	Z	 ddl
mZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZ eeZG d	d
 d
eZ d
gZ!dS )z#Image processor class for ViTMatte.    )ListOptionalUnionN   )BaseImageProcessorBatchFeature)padto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputget_image_sizeinfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsloggingc                       sn  e Zd ZdZdgZ							ddedeeef d	ed
e	eee
e f  de	eee
e f  dededdf fddZ			ddejdede	eeef  de	eeef  dejf
ddZe ddddddddejdf
dedede	e de	e d	e	e d
e	eee
e f  de	eee
e f  de	e de	e de	eeef  deeef de	eeef  fddZ  ZS )VitMatteImageProcessora  
    Constructs a ViTMatte image processor.

    Args:
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_pad (`bool`, *optional*, defaults to `True`):
            Whether to pad the image to make the width and height divisible by `size_divisibility`. Can be overridden
            by the `do_pad` parameter in the `preprocess` method.
        size_divisibility (`int`, *optional*, defaults to 32):
            The width and height of the image will be padded to be divisible by this number.
    pixel_valuesTp?N    
do_rescalerescale_factordo_normalize
image_mean	image_stddo_padsize_divisibilityreturnc           	         sX   t  jdi | || _|| _|| _|| _|d ur|nt| _|d ur$|nt| _	|| _
d S )N )super__init__r   r   r!   r   r
   r   r   r    r"   )	selfr   r   r   r   r    r!   r"   kwargs	__class__r$   e/var/www/auris/lib/python3.10/site-packages/transformers/models/vitmatte/image_processing_vitmatte.pyr&   G   s   
zVitMatteImageProcessor.__init__imagedata_formatinput_data_formatc           
      C   s   |du rt |}t||\}}|| dkrdn|||  }|| dkr%dn|||  }|| dkrAd|fd|ff}	t||	||d}|durKt|||}|S )a  
        Args:
            image (`np.ndarray`):
                Image to pad.
            size_divisibility (`int`, *optional*, defaults to 32):
                The width and height of the image will be padded to be divisible by this number.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr   )paddingr-   r.   )r   r   r   r	   )
r'   r,   r"   r-   r.   heightwidthZ
pad_heightZ	pad_widthr/   r$   r$   r+   	pad_image[   s   z VitMatteImageProcessor.pad_imageimagestrimapsreturn_tensorsc              	      s  |dur|nj }|dur|nj}|dur|nj}dur!njdur*njdur3njdur<njt|}t|dd}t|sQt	dt|sYt	dt
|||d dd |D }d	d |D }|rt|d
 rtd du rt|d
 |rfdd|D }fdd|D }|rfdd|D }tjkrdnd
  fddt||D }|rчfdd|D }fdd|D }d|i}t||
dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            trimaps (`ImageInput`):
                Trimap to preprocess.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use if `do_normalize` is set to `True`.
            do_pad (`bool`, *optional*, defaults to `self.do_pad`):
                Whether to pad the image.
            size_divisibility (`int`, *optional*, defaults to `self.size_divisibility`):
                The size divisibility to pad the image to if `do_pad` is set to `True`.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        N   )Zexpected_ndimszlInvalid trimap type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r   r   r   r   r    r!   r"   c                 S      g | ]}t |qS r$   r   .0r,   r$   r$   r+   
<listcomp>       z5VitMatteImageProcessor.preprocess.<locals>.<listcomp>c                 S   r7   r$   r8   r:   trimapr$   r$   r+   r;      r<   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                       g | ]
}j | d qS )r,   scaler.   Zrescaler9   r.   r   r'   r$   r+   r;          c                    r?   r@   rB   r=   rC   r$   r+   r;      rD   c                    s   g | ]}j | d qS ))r,   meanZstdr.   )	normalizer9   )r   r    r.   r'   r$   r+   r;      s    c                    s,   g | ]\}}t j|t j| d g d qS )axis)npZconcatenateZexpand_dims)r:   r,   r>   rH   r$   r+   r;      s    c                    s   g | ]
}j | d qS ))r"   r.   )r2   r9   )r.   r'   r"   r$   r+   r;     rD   c                    s   g | ]	}t | d qS ))r,   Zchannel_dimZinput_channel_dim)r	   r9   )r-   r.   r$   r+   r;   	  s    r   )dataZtensor_type)r   r   r!   r   r   r    r"   r   r   
ValueErrorr   r   loggerZwarning_oncer   r   ZLASTzipr   )r'   r3   r4   r   r   r   r   r    r!   r"   r5   r-   r.   rK   r$   )rI   r-   r   r    r.   r   r'   r"   r+   
preprocess   st   :
z!VitMatteImageProcessor.preprocess)Tr   TNNTr   )r   NN)__name__
__module____qualname____doc__Zmodel_input_namesboolr   intfloatr   r   r&   rJ   Zndarraystrr   r2   r   ZFIRSTr   r   rO   __classcell__r$   r$   r)   r+   r   *   s    


)	

r   )"rS   typingr   r   r   numpyrJ   Zimage_processing_utilsr   r   Zimage_transformsr   r	   Zimage_utilsr
   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Z
get_loggerrP   rM   r   __all__r$   r$   r$   r+   <module>   s   4
 
i