o
    ZhA                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZm Z  dd	l!m"Z" e rYddl#Z#e $e%Z&d
eee  fddZ'e"ddG dd de	Z(dgZ)dS )z#Image processor class for VideoMAE.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)get_resize_output_image_sizeresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imageis_valid_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availablelogging)requiresreturnc                 C   sr   t | ttfrt | d ttfrt| d d r| S t | ttfr*t| d r*| gS t| r2| ggS td|  )Nr   z"Could not make batched video from )
isinstancelisttupler   
ValueError)videos r#   e/var/www/auris/lib/python3.10/site-packages/transformers/models/videomae/image_processing_videomae.pymake_batched3   s   0r%   )Zvision)backendsc                !       s  e Zd ZdZdgZddejdddddddf
dedee	e
ef  ded	ed
ee	e
ef  dedeeef dedeeeee f  deeeee f  ddf fddZejddfdejde	e
ef dedeee
ef  deee
ef  dejfddZddddddddddejdfdedee dee	e
ef  ded	ee d
ee	e
ef  dee dee dee deeeee f  deeeee f  dee deee
ef  dejfddZe dddddddddddejdfdedee dee	e
ef  ded	ee d
ee	e
ef  dee dee dee deeeee f  deeeee f  deee
ef  dedeee
ef  dejjfddZ  ZS )VideoMAEImageProcessorap
  
    Constructs a VideoMAE image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
            Size of the output image after resizing. The shortest edge of the image will be resized to
            `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overridden by
            `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
            parameter in the `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
            in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizeresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stdr   c                    s   t  jdi | |d ur|nddi}t|dd}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	d urH|	nt| _|
d urT|
| _d S t| _d S )	Nshortest_edge   Fdefault_to_square)heightwidthr-   
param_namer#   )super__init__r	   r)   r*   r,   r-   r+   r.   r/   r0   r   r1   r   r2   )selfr)   r*   r+   r,   r-   r.   r/   r0   r1   r2   kwargs	__class__r#   r$   r<   i   s   zVideoMAEImageProcessor.__init__imagedata_formatinput_data_formatc                 K   sx   t |dd}d|v rt||d d|d}nd|v r&d|v r&|d |d f}n	td|  t|f||||d|S )	a  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
                have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
                shortest edge of length `s` while keeping the aspect ratio of the original image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        Fr5   r3   )r6   rC   r7   r8   zDSize must have 'height' and 'width' or 'shortest_edge' as keys. Got )r*   r+   rB   rC   )r	   r
   r!   keysr   )r=   rA   r*   r+   rB   rC   r>   Zoutput_sizer#   r#   r$   r      s$   zVideoMAEImageProcessor.resizec                 C   s   t |||	|
||||||d
 t|}|rt|rtd |du r%t|}|r0| j||||d}|r:| j|||d}|rD| j|||d}|	rO| j	||
||d}t
|||d}|S )	zPreprocesses a single image.)
r.   r/   r0   r1   r2   r,   r-   r)   r*   r+   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.N)rA   r*   r+   rC   )r*   rC   )rA   scalerC   )rA   meanZstdrC   )Zinput_channel_dim)r   r   r   loggerZwarning_oncer   r   Zcenter_cropZrescale	normalizer   )r=   rA   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rB   rC   r#   r#   r$   _preprocess_image   s:   z(VideoMAEImageProcessor._preprocess_imager"   return_tensorsc                    s"  durnj 	dur	nj	durnjdur!nj
dur*
nj
dur3njdur<njdurEnjdurNnjt	dd dur] nj
 t	 dd t|sntdt|} 	
fdd|D }d	|i}t||d
S )aH  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after applying resize.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
                Whether to centre crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after applying the centre crop.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                    - Unset: Use the inferred channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFr5   r-   r9   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.c                    s6   g | ]} 	
fd d|D qS )c                    s0   g | ]}j |	 
d qS ))rA   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rB   rC   )rI   ).0Zimgr-   rB   r,   r0   r.   r)   r1   r2   rC   r+   r/   r=   r*   r#   r$   
<listcomp>E  s$    z@VideoMAEImageProcessor.preprocess.<locals>.<listcomp>.<listcomp>r#   )rK   ZvideorL   r#   r$   rM   D  s    "z5VideoMAEImageProcessor.preprocess.<locals>.<listcomp>r(   )dataZtensor_type)r)   r+   r,   r.   r/   r0   r1   r2   r*   r	   r-   r   r!   r%   r   )r=   r"   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   rJ   rB   rC   rN   r#   rL   r$   
preprocess   s,   A"z!VideoMAEImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strintr   floatr   r<   npZndarrayr   r   ZFIRSTr   rI   r   r   PILZImagerO   __classcell__r#   r#   r?   r$   r'   @   s   %
	
#

/	

9	
r'   )*rS   typingr   r   r   r   numpyrX   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   Zutils.import_utilsr   rY   Z
get_loggerrP   rG   r%   r'   __all__r#   r#   r#   r$   <module>   s"   4
  
