o
    Zh1Y                     @   s"  d Z ddlmZmZmZmZmZmZ ddlZ	ddl
mZmZmZ ddlmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZ ddlm Z m!Z!m"Z"m#Z# e" rYddl$Z$e#%e&Z'd	eee  fd
dZ(		dde	j)de*deee+ef  d	ee*e*f fddZ,G dd deZ-dgZ.dS )zImage processor class for TVP.    )DictIterableListOptionalTupleUnionN   )BaseImageProcessorBatchFeatureget_size_dict)PaddingModeflip_channel_orderpadresizeto_channel_dimension_format)
IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplingget_image_sizeis_valid_imageto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingreturnc                 C   sr   t | ttfrt | d ttfrt| d d r| S t | ttfr*t| d r*| gS t| r2| ggS td|  )Nr   z"Could not make batched video from )
isinstancelisttupler   
ValueError)videos r%   [/var/www/auris/lib/python3.10/site-packages/transformers/models/tvp/image_processing_tvp.pymake_batched4   s   0r'     input_imagemax_sizeinput_data_formatc           	      C   s\   t | |\}}||kr|d | }|}|| }n|d | }|}|| }t|t|f}|S )Ng      ?)r   int)	r)   r*   r+   heightwidthratioZ
new_heightZ	new_widthsizer%   r%   r&   get_resize_output_image_sizeA   s   
r1   c                +       s  e Zd ZdZdgZddejdddddddejddddfde	de
eeef  d	ed
e	de
eeef  de	deeef de	de
eeef  deeee f dede	de	de
eeee f  de
eeee f  ddf  fddZejddfdejdeeef d	ede
eeef  de
eeef  dejfddZddejddfdejde
eeef  deeee f dede
eeef  de
eeef  fddZdddddddddddddddejdfdede
e	 de
eeef  d	ed
e
e	 de
eeef  de
e	 de
e de	de
eeef  de
eeee f  dede
e	 de
e	 de
eeee f  de
eeee f  de
e de
eeef  dejf&d d!Ze ddddddddddddddddejdfd"eeee eee  f de
e	 de
eeef  d	ed
e
e	 de
eeef  de
e	 de
e de
e	 de
eeef  de
eeee f  dede
e	 de
e	 de
eeee f  de
eeee f  d#e
eeef  dede
eeef  dejjf(d$d%Z  Z S )&TvpImageProcessora  
    Constructs a Tvp image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"longest_edge": 448}`):
            Size of the output image after resizing. The longest edge of the image will be resized to
            `size["longest_edge"]` while maintaining the aspect ratio of the original image. Can be overridden by
            `size` in the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
            parameter in the `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
            Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
            in the `preprocess` method.
        do_pad (`bool`, *optional*, defaults to `True`):
            Whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method.
        pad_size (`Dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
            Size of the image after applying the padding. Can be overridden by the `pad_size` parameter in the
            `preprocess` method.
        constant_values (`Union[float, Iterable[float]]`, *optional*, defaults to 0):
            The fill value to use when padding the image.
        pad_mode (`PaddingMode`, *optional*, defaults to `PaddingMode.CONSTANT`):
            Use what kind of mode in padding.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        do_flip_channel_order (`bool`, *optional*, defaults to `True`):
            Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
            parameter in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?r   	do_resizer0   resampledo_center_crop	crop_size
do_rescalerescale_factordo_padpad_sizeconstant_valuespad_modedo_normalizedo_flip_channel_order
image_mean	image_stdr   c                    s   t  jdi | |d ur|nddi}|d ur|nddd}|	d ur$|	nddd}	|| _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|d urV|nt| _|d urb|| _d S t| _d S )Nlongest_edger(   )r-   r.   r%   )super__init__r4   r0   r6   r7   r5   r8   r9   r:   r;   r<   r=   r>   r?   r   r@   r   rA   )selfr4   r0   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   kwargs	__class__r%   r&   rD      s&   zTvpImageProcessor.__init__imagedata_formatr+   c                 K   st   t |dd}d|v rd|v r|d |d f}nd|v r$t||d |}n	td|  t|f||||d|S )a  
        Resize an image.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
                have the size `(h, w)`. If `size` is of the form `{"longest_edge": s}`, the output image will have its
                longest edge of length `s` while keeping the aspect ratio of the original image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        FZdefault_to_squarer-   r.   rB   zCSize must have 'height' and 'width' or 'longest_edge' as keys. Got )r0   r5   rJ   r+   )r   r1   r#   keysr   )rE   rI   r0   r5   rJ   r+   rF   Zoutput_sizer%   r%   r&   r      s    zTvpImageProcessor.resizec                 K   sz   t ||d\}}	|d|}
|d|	}||	 |
| }}|dk s%|dk r)tdd|fd|ff}t||||||d}|S )a+  
        Pad an image with zeros to the given size.

        Args:
            image (`np.ndarray`):
                Image to pad.
            pad_size (`Dict[str, int]`)
                Size of the output image with pad.
            constant_values (`Union[float, Iterable[float]]`)
                The fill value to use when padding the image.
            pad_mode (`PaddingMode`)
                The pad mode, default to PaddingMode.CONSTANT
            data_format (`ChannelDimension` or `str`, *optional*)
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        )Zchannel_dimr-   r.   r   z0The padding size must be greater than image size)moder<   rJ   r+   )r   getr#   r   )rE   rI   r;   r<   r=   rJ   r+   rF   r-   r.   
max_height	max_width	pad_rightZ
pad_bottompaddingZpadded_imager%   r%   r&   	pad_image   s    	zTvpImageProcessor.pad_imagec                 K   s   t ||||||	|
|||||d t|}|r| j||||d}|r)| j|||d}|r3| j|||d}|rB| j|tj|||d}|	rN| j	||
|||d}|rVt
||d}t|||d}|S )	zPreprocesses a single image.)r8   r9   r>   r@   rA   r:   Zsize_divisibilityr6   r7   r4   r0   r5   )rI   r0   r5   r+   )r0   r+   )rI   scaler+   )rI   meanZstdr+   )rI   r;   r<   r=   r+   )rI   r+   )Zinput_channel_dim)r   r   r   Zcenter_cropZrescale	normalizeZastypenpZfloat32rS   r   r   )rE   rI   r4   r0   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rJ   r+   rF   r%   r%   r&   _preprocess_image
  sJ   	z#TvpImageProcessor._preprocess_imager$   return_tensorsc                    s  durnj durnjdurnjdur!njdur*njdur3njdur<nj durE nj rLnjdurUnj	dur^nj
	durg	nj	
durp
nj
durynjtdddurnjtddt|stdt|} 	
fdd|D }d	|i}t||d
S )a9  
        Preprocess an image or batch of images.

        Args:
            videos (`ImageInput` or `List[ImageInput]` or `List[List[ImageInput]]`):
                Frames to preprocess.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after applying resize.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
                Whether to centre crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after applying the centre crop.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_pad (`bool`, *optional*, defaults to `True`):
                Whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method.
            pad_size (`Dict[str, int]`, *optional*, defaults to `{"height": 448, "width": 448}`):
                Size of the image after applying the padding. Can be overridden by the `pad_size` parameter in the
                `preprocess` method.
            constant_values (`Union[float, Iterable[float]]`, *optional*, defaults to 0):
                The fill value to use when padding the image.
            pad_mode (`PaddingMode`, *optional*, defaults to "PaddingMode.CONSTANT"):
                Use what kind of mode in padding.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
                Whether to flip the channel order of the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                    - Unset: Use the inferred channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NFrK   r7   )
param_namezkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.c                    sF   g | ]}t  	
fd d|D qS )c                    s   g | ]>}j di d |ddddddddd	d
 dddd	d
ddqS )rI   r4   r0   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rJ   r+   r%   )rX   ).0Zimgr<   r7   rJ   r6   r?   r>   r:   r8   r4   r@   rA   r+   r=   r;   r5   r9   rE   r0   r%   r&   
<listcomp>  sP    
	
z;TvpImageProcessor.preprocess.<locals>.<listcomp>.<listcomp>)rW   array)r[   Zvideor\   r%   r&   r]     s    ,z0TvpImageProcessor.preprocess.<locals>.<listcomp>r3   )dataZtensor_type)r4   r5   r6   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   r0   r   r7   r   r#   r'   r
   )rE   r$   r4   r0   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rY   rJ   r+   r_   r%   r\   r&   
preprocessS  s8   P,zTvpImageProcessor.preprocess)!__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARr   ZCONSTANTboolr   r   strr,   r   floatr   r   rD   rW   ndarrayr   r   rS   ZFIRSTr   rX   r   r   PILZImager`   __classcell__r%   r%   rG   r&   r2   T   s   1
	
,

.
2	

I	
r2   )r(   N)/rd   typingr   r   r   r   r   r   numpyrW   Zimage_processing_utilsr	   r
   r   Zimage_transformsr   r   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   ri   Z
get_loggerra   loggerr'   rh   r,   rf   r1   r2   __all__r%   r%   r%   r&   <module>   s6    0


   
