o
    Zh;E                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZm Z m!Z! e!"e#Z$e  rZddl%Z%G d	d
 d
e	Z&d
gZ'dS )z"Image processor class for TextNet.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)convert_to_rgbget_resize_output_image_sizeresizeto_channel_dimension_format)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_kwargsvalidate_preprocess_arguments)
TensorTypeis_vision_availableloggingc                $       s  e Zd ZdZdgZdddejdddddeedfde	d	e
eeef  d
edede	de
eeef  de	deeef de	de
eeee f  de
eeee f  de	ddf fddZejddfdejd	eeef dede
eeef  de
eeef  dejfddZdddddddddddddejdfdede
e	 d	e
eeef  d
e
e dede
e	 de
e de
e	 de
e de
e	 de
eeee f  de
eeee f  de
e	 de
eeef  de
e de
eeef  dejjf"ddZ  ZS ) TextNetImageProcessora(  
    Constructs a TextNet image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 640}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        size_divisor (`int`, *optional*, defaults to 32):
            Ensures height and width are rounded to a multiple of this value after resizing.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `False`):
            Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
            `preprocess` method.
        crop_size (`Dict[str, int]` *optional*, defaults to 224):
            Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
            method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    pixel_valuesTN    Fgp?	do_resizesizesize_divisorresampledo_center_crop	crop_size
do_rescalerescale_factordo_normalize
image_mean	image_stddo_convert_rgbreturnc                    s   t  jd
i | |d ur|nddi}t|dd}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
d urK|
nt| _|d urT|nt| _|| _g d	| _d S )Nshortest_edgei  F)default_to_square   )heightwidthr%   )
param_name)imagesr    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   return_tensorsdata_formatinput_data_format )super__init__r	   r    r!   r"   r#   r$   r%   r&   r'   r(   r   r)   r   r*   r+   _valid_processor_keys)selfr    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   kwargs	__class__r7   c/var/www/auris/lib/python3.10/site-packages/transformers/models/textnet/image_processing_textnet.pyr9   ^   s$   zTextNetImageProcessor.__init__imager5   r6   c           	      K   s   d|v r	|d }nd|v rd|v r|d |d f}nt dt|||dd\}}|| j dkr9|| j|| j  7 }|| j dkrJ|| j|| j  7 }t|f||f|||d|S )	a  
        Resize an image. The shortest edge of the image is resized to size["shortest_edge"] , with the longest edge
        resized to keep the input aspect ratio. Both the height and width are resized to be divisible by 32.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            size_divisor (`int`, *optional*, defaults to `32`):
                Ensures height and width are rounded to a multiple of this value after resizing.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
            default_to_square (`bool`, *optional*, defaults to `False`):
                The value to be passed to `get_size_dict` as `default_to_square` when computing the image size. If the
                `size` argument in `get_size_dict` is an `int`, it determines whether to default to a square image or
                not.Note that this attribute is not used in computing `crop_size` via calling `get_size_dict`.
        r-   r0   r1   zASize must contain either 'shortest_edge' or 'height' and 'width'.F)r!   r6   r.   r   )r!   r#   r5   r6   )
ValueErrorr   r"   r   )	r;   r@   r!   r#   r5   r6   r<   r0   r1   r7   r7   r?   r      s,   

zTextNetImageProcessor.resizer3   r4   c                    s  |dur|n| j }|dur|n| j}t|ddd}|dur|n| j}|dur(|n| j}|dur1|n| j}|dur:|n| j}t|ddd}|durJ|n| j}|	durS|	n| j}	|
dur\|
n| j	}
|dure|n| j
}|durn|n| j}|durw|n| j}t| | jd t|}t|stdt||	|
|||||||d	
 |rd
d |D }dd |D }t|d r|rtd du rt|d g }|D ]1}|r| j|||d}|r| j||d}|r| j||	d}|
r| j|||d}|| qȇ fdd|D }d|i}t||dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            size_divisor (`int`, *optional*, defaults to `32`):
                Ensures height and width are rounded to a multiple of this value after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr!   F)r2   r.   r%   T)Zcaptured_kwargsZvalid_processor_keyszkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r&   r'   r(   r)   r*   r$   r%   r    r!   r#   c                 S      g | ]}t |qS r7   )r
   .0r@   r7   r7   r?   
<listcomp>:      z4TextNetImageProcessor.preprocess.<locals>.<listcomp>c                 S   rB   r7   )r   rC   r7   r7   r?   rE   =  rF   r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.)r@   r!   r#   r6   )r@   r!   r6   )r@   scaler6   )r@   meanZstdr6   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   rC   r5   r6   r7   r?   rE   Z  s    r   )dataZtensor_type)r    r!   r	   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r   keysr:   r   r   rA   r   r   loggerZwarning_oncer   r   Zcenter_cropZrescale	normalizeappendr   )r;   r3   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r4   r5   r6   r<   Z
all_imagesr@   rJ   r7   rI   r?   
preprocess   sv   Iz TextNetImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARr   r   boolr   r   strintr   floatr   r9   npZndarrayr   r   ZFIRSTr   r   PILZImagerO   __classcell__r7   r7   r=   r?   r   3   s    (
	
:

:	
r   )(rS   typingr   r   r   r   numpyrX   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Z
get_loggerrP   rL   rY   r   __all__r7   r7   r7   r?   <module>   s   8
  
2