o
    Zh26                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZ ee Z!G d	d
 d
e	Z"d
gZ#dS )zImage processor class for Pvt.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)resizeto_channel_dimension_format)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsloggingc                       s  e Zd ZdZdgZddejdddddfdedee	e
ef  ded	ed
eeef dedeeeee f  deeeee f  ddf fddZejddfdejde	e
ef dedeee
ef  deee
ef  dejfddZe dddddddddejdfdedee dee	e
ef  ded	ee d
ee dee deeeee f  deeeee f  deee
ef  dee
ef deee
ef  fddZ  ZS )PvtImageProcessora  
    Constructs a PVT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
            size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
        size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    pixel_valuesTNgp?	do_resizesizeresample
do_rescalerescale_factordo_normalize
image_mean	image_stdreturnc	           
         s   t  jdi |	 |d ur|nddd}t|}|| _|| _|| _|| _|| _|| _|d ur0|nt	| _
|d ur<|| _d S t| _d S )N   )heightwidth )super__init__r	   r   r   r!   r   r   r    r   r"   r   r#   )
selfr   r   r   r   r    r!   r"   r#   kwargs	__class__r(   [/var/www/auris/lib/python3.10/site-packages/transformers/models/pvt/image_processing_pvt.pyr*   K   s   zPvtImageProcessor.__init__imagedata_formatinput_data_formatc                 K   sT   t |}d|vsd|vrtd|  |d |d f}t|f||||d|S )a  
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        r&   r'   zFThe `size` dictionary must contain the keys `height` and `width`. Got )r   r   r1   r2   )r	   
ValueErrorkeysr
   )r+   r0   r   r   r1   r2   r,   Zoutput_sizer(   r(   r/   r
   d   s   #zPvtImageProcessor.resizeimagesreturn_tensorsc              
      s~  |dur|nj }|dur|nj}|dur|nj}dur!njdur*njdur3njdur<nj|durE|nj}t|t	|}t
|sXtdt||||d dd |D }|rxt|d rxtd du rt|d |rfdd|D }|rfd	d|D }|rfd
d|D } fdd|D }d|i}t||
dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
                resizing.
            resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
                `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
                an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use if `do_normalize` is set to `True`.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        NzkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)r   r    r!   r"   r#   r   r   r   c                 S   s   g | ]}t |qS r(   )r   .0r0   r(   r(   r/   
<listcomp>   s    z0PvtImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                    s   g | ]}j | d qS ))r0   r   r   r2   )r
   r7   )r2   r   r+   	size_dictr(   r/   r9          c                    s   g | ]
}j | d qS ))r0   scaler2   )Zrescaler7   )r2   r    r+   r(   r/   r9     s    c                    s   g | ]}j | d qS ))r0   meanZstdr2   )	normalizer7   )r"   r#   r2   r+   r(   r/   r9     r;   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   r7   )r1   r2   r(   r/   r9     s    r   )dataZtensor_type)r   r   r!   r   r    r"   r#   r   r	   r   r   r3   r   r   loggerZwarning_oncer   r   )r+   r5   r   r   r   r   r    r!   r"   r#   r6   r1   r2   r?   r(   )r1   r"   r#   r2   r   r    r+   r:   r/   
preprocess   s`   <zPvtImageProcessor.preprocess)__name__
__module____qualname____doc__Zmodel_input_namesr   ZBILINEARboolr   r   strintr   floatr   r*   npZndarrayr   r
   r   ZFIRSTr   r   rA   __classcell__r(   r(   r-   r/   r   *   s    
	

0	

r   )$rE   typingr   r   r   r   numpyrJ   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   Z
get_loggerrB   r@   r   __all__r(   r(   r(   r/   <module>   s   4
 
k