o
    Zh#                     @   sL   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
dgZdS )zPersimmon model configuration   )PretrainedConfig)rope_config_validation)loggingc                       sT   e Zd ZdZdZdgZ									
												d fdd	Z  ZS )PersimmonConfiga,  
    This is the configuration class to store the configuration of a [`PersimmonModel`]. It is used to instantiate an
    Persimmon model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [adept/persimmon-8b-base](https://huggingface.co/adept/persimmon-8b-base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 262144):
            Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`PersimmonModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 16384):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 25000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        qk_layernorm (`bool`, *optional*, default to `True`):
            Whether or not to normalize the Queries and Keys after projecting the hidden states
        hidden_dropout (`float`, *optional*, default to 0.0):
            The dropout ratio after applying the MLP to the hidden states.
        attention_dropout (`float`, *optional*, default to 0.0):
            The dropout ratio after computing the attention scores.
        partial_rotary_factor (`float`, *optional*, default to 0.5):
            Percentage of the query and keys which will have rotary embedding.

        Example:

    ```python
    >>> from transformers import PersimmonModel, PersimmonConfig

    >>> # Initializing a Persimmon persimmon-7b style configuration
    >>> configuration = PersimmonConfig()
    ```Z	persimmonZpast_key_values       @  $   @   relu2{Gz?h㈵>TF     j@N              ?      c                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _| jd urBd| jv rB| jd | jd< t|  t jd||||d| d S )NtypeZ	rope_type)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingqk_layernormhidden_dropoutattention_dropoutpartial_rotary_factorr   super__init__)selfr   r   r   r   r   r   r   r    r!   r"   r   r#   r$   r%   r&   r'   r(   r   r   r   kwargs	__class__r   d/var/www/auris/lib/python3.10/site-packages/transformers/models/persimmon/configuration_persimmon.pyr*   y   s6   
zPersimmonConfig.__init__)r   r   r   r	   r
   r   r   r   r   TFr   NTr   r   r   Nr   r   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer*   __classcell__r   r   r-   r/   r      s2    \r   N)r3   Zconfiguration_utilsr   Zmodeling_rope_utilsr   utilsr   Z
get_loggerr0   loggerr   __all__r   r   r   r/   <module>   s   
 
