o
    Zh"                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ ddlmZ eeZG d	d
 d
eZG dd deZd
dgZdS )zGPT-J model configuration    )OrderedDict)AnyListMappingOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingc                       sV   e Zd ZdZdZdddddZ				
														d fdd	Z  ZS )
GPTJConfiga=  
    This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GPT-J
    [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
    [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
    for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPTJModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import GPTJModel, GPTJConfig

    >>> # Initializing a GPT-J 6B configuration
    >>> configuration = GPTJConfig()

    >>> # Initializing a model from the configuration
    >>> model = GPTJModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgptjn_positionsn_embdn_headn_layer)Zmax_position_embeddingshidden_sizenum_attention_headsZnum_hidden_layers              @   Ngelu_new        h㈵>{Gz?TP  Fc                    s~   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _t jd|||d| d S )N)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizer   r   r   r   n_inner
rotary_dimactivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_range	use_cacher!   r"   super__init__)selfr%   r   r   r   r   r'   r&   r(   r)   r*   r+   r,   r-   r.   r!   r"   r#   kwargs	__class__r$   Z/var/www/auris/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.pyr0   ]   s*   
zGPTJConfig.__init__)r   r   r   r   r   r   Nr   r   r   r   r   r   Tr    r    F)__name__
__module____qualname____doc__Z
model_typeZattribute_mapr0   __classcell__r$   r$   r3   r5   r      s4    7	r   c                       s   e Zd Z			ddededeee  def fdd	Z	e
d
eeeeef f fddZe
d
efddZe
d
efddZ				ddededededee d
eeef f fddZe
d
efddZ  ZS )GPTJOnnxConfigdefaultNFconfigtaskpatching_specsuse_pastc                    s2   t  j||||d t| jdd sd| j_d S d S )N)r>   r?   r@   pad_token_idr   )r/   r0   getattr_configrA   )r1   r=   r>   r?   r@   r3   r$   r5   r0      s   zGPTJOnnxConfig.__init__returnc                 C   sJ   t ddddi}| jr| j|dd ddd|d< |S ddd|d< |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   r@   Zfill_with_past_key_values_)r1   common_inputsr$   r$   r5   rI      s   zGPTJOnnxConfig.inputsc                 C      | j jS N)rC   r   r1   r$   r$   r5   
num_layers      zGPTJOnnxConfig.num_layersc                 C   rM   rN   )rC   r   rO   r$   r$   r5   r      rQ   z"GPTJOnnxConfig.num_attention_heads	tokenizer
batch_size
seq_lengthis_pair	frameworkc                    s   t t| j|||||d}td|d i}| jrIt stddd l|d j\}}	|	d }
|| j	|
| j
j| j	 f  fddt| jD |d< |d	 |d	< | jrj|d	 j}j|d	 j||
|d
gdd|d	< |S )N)rT   rU   rV   rW   rE   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                    s    g | ]}    fqS r$   )Zzeros).0_Z
past_shapetorchr$   r5   
<listcomp>   s    z8GPTJOnnxConfig.generate_dummy_inputs.<locals>.<listcomp>Zpast_key_valuesrK   )dtyperH   )dim)r/   r   generate_dummy_inputsr   r@   r
   
ValueErrorr\   shaper   rC   r   rangerP   r^   catZones)r1   rS   rT   rU   rV   rW   rL   Zordered_inputsrF   ZseqlenZpast_key_values_lengthZ
mask_dtyper3   r[   r5   r`      s2   




z$GPTJOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r$   rO   r$   r$   r5   default_onnx_opset   s   z!GPTJOnnxConfig.default_onnx_opset)r<   NF)rR   rR   FN)r6   r7   r8   r   strr   r   r   boolr0   propertyr   intrI   rP   r   r   r	   r   r`   rf   r:   r$   r$   r3   r5   r;      sL    
 

,r;   N)r9   collectionsr   typingr   r   r   r    r   r	   r
   Zconfiguration_utilsr   Zonnxr   r   utilsr   Z
get_loggerr6   loggerr   r;   __all__r$   r$   r$   r5   <module>   s   
mQ