# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GPTNeoX model."""

import math
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import Tensor, nn

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import auto_docstring, is_torch_flex_attn_available, logging
from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask

    from ...integrations.flex_attention import make_flex_block_causal_mask


logger = logging.get_logger(__name__)


@auto_docstring
class GPTNeoXJapanesePreTrainedModel(PreTrainedModel):
    config_class = GPTNeoXJapaneseConfig
    base_model_prefix = "gpt_neox_japanese"
    _no_split_modules = ["GPTNeoXJapaneseLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, GPTNeoXJapaneseAttention):
            if module.dense_bias is not None:
                module.dense_bias.data.zero_()


class GPTNeoXJapaneseAttention(nn.Module):
    def __init__(self, config, use_bias=False, layer_idx=None):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.num_attention_heads
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.layer_idx = layer_idx
        self.rotary_ndims = int(self.head_size * config.rotary_pct)
        self.rope_theta = config.rotary_emb_base
        self.rotary_emb = GPTNeoXJapaneseRotaryEmbedding(config=config)
        self.attention_dropout = nn.Dropout(config.attention_dropout)
        self.norm_factor = math.sqrt(self.head_size)

        self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
        # Activate bias if the last layer
        self.use_bias = use_bias
        self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        head_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
    ):
        # Compute QKV
        # Attention heads [batch, seq_len, hidden_size]
        #   --> [batch, seq_len, (np * 3 * head_size)]
        qkv = self.query_key_value(hidden_states)

        # [batch, seq_len, (num_heads * 3 * head_size)]
        #   --> [batch, seq_len, num_heads, 3 * head_size]
        new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
        qkv = qkv.view(*new_qkv_shape)

        # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
        query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
        key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
        value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)

        # Compute rotary embeddings on rotary_ndims
        query_rot = query[..., : self.rotary_ndims]
        query_pass = query[..., self.rotary_ndims :]
        key_rot = key[..., : self.rotary_ndims]
        key_pass = key[..., self.rotary_ndims :]

        cos, sin = position_embeddings
        query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
        query = torch.cat((query, query_pass), dim=-1).contiguous()
        key = torch.cat((key, key_pass), dim=-1).contiguous()

        # Cache QKV values
        if layer_past is not None:
            cache_kwargs = {
                "sin": sin,
                "cos": cos,
                "partial_rotation_size": self.rotary_ndims,
                "cache_position": cache_position,
            }
            key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs)

        # Compute attention
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        # Reshape outputs
        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
        attn_output = self.dense(attn_output)

        outputs = (attn_output, layer_past)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs, self.dense_bias

    @classmethod
    def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
        """
        Splits hidden dim into attn_head_size and num_attention_heads
        """
        # tensor: [bs, seq_len, hidden_size]
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
        # -> [bs, seq_len, num_attention_heads, attn_head_size]
        tensor = tensor.view(new_shape)
        # -> [bs, num_attention_heads, seq_len, attn_head_size]
        tensor = tensor.permute(0, 2, 1, 3)
        return tensor

    @classmethod
    def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
        """
        # tensor [bs, num_attention_heads, seq_len, attn_head_size]
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        # -> [bs, seq_len, num_attention_heads, attn_head_size]
        tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
        # -> [bs, seq_len, hidden_size]
        return tensor

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
        # compute causal mask from causal mask buffer
        batch_size, num_attention_heads, query_length, attn_head_size = query.size()
        key_length = key.size(-2)

        query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
        key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)

        # [batch_size * num_heads, q_length, kv_length]
        attn_scores = torch.zeros(
            batch_size * num_attention_heads,
            query_length,
            key_length,
            dtype=query.dtype,
            device=key.device,
        )
        attention_scores = torch.baddbmm(
            attn_scores,
            query,
            key.transpose(1, 2),
            beta=1.0,
            alpha=1.0 / self.norm_factor,
        )

        attention_scores = attention_scores.view(batch_size, num_attention_heads, query_length, -1)
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key.shape[-2]]
            attention_scores = attention_scores + causal_mask

        attn_weights = nn.functional.softmax(attention_scores, dim=-1)
        attn_weights = self.attention_dropout(attn_weights)
        attn_weights = attn_weights.to(value.dtype)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)
        return attn_output, attn_weights


# Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoX->GPTNeoXJapanese
class GPTNeoXJapaneseRotaryEmbedding(nn.Module):
    def __init__(self, config: GPTNeoXJapaneseConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor:
    """add bias to x, apply dropout and residual connection

    Args:
        x (Tensor): main path of output
        bias (Tensor): None or attn_bias of the last attention layer
        residual (Optional[Tensor]): residual value
        prob (float): dropout probability
        training (bool): whether in training mode or not

    Returns:
        Tensor: dropout(x + bias) + residual
    """
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
    if residual is not None:
        out = residual + out
    return out


class GPTNeoXJapaneseMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        intermediate_size = int(config.hidden_size * config.intermediate_multiple_size)
        self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False)
        # Project back to h.
        self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False)
        self.act = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        intermediate = self.dense_h_to_4h(hidden_states)
        intermediate = self.act(intermediate)
        output = self.dense_4h_to_h(intermediate)
        return output


class GPTNeoXJapaneseLayer(nn.Module):
    def __init__(self, config, layer_number):
        super().__init__()
        self.layer_number = layer_number
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        # activate bias only last layer
        self.attention = GPTNeoXJapaneseAttention(
            config=config, use_bias=layer_number == config.num_hidden_layers - 1, layer_idx=layer_number
        )
        self.mlp = GPTNeoXJapaneseMLP(config)
        self.hidden_dropout = config.hidden_dropout

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        layer_past: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
    ):
        residual = hidden_states
        ln_out = self.input_layernorm(hidden_states)
        attention_layer_outputs, attn_bias = self.attention(
            ln_out,
            attention_mask=attention_mask,
            layer_past=layer_past,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            position_ids=position_ids,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
        )
        attn_output = attention_layer_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attention_layer_outputs[1:]

        # attn_output = (atten_output + bias) + residual
        attn_output = bias_dropout_add(
            attn_output,
            bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias,
            residual=residual,
            prob=self.hidden_dropout,
            training=self.training,
        )
        mlp_output = self.mlp(self.post_attention_layernorm(attn_output))

        # attn_output = (mlp_output + mlp_bias) + atten_output
        attn_output = bias_dropout_add(
            mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training
        )

        if use_cache:
            outputs = (attn_output,) + outputs
        else:
            outputs = (attn_output,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


@auto_docstring
class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList(
            [GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)]
        )
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.rotary_emb = GPTNeoXJapaneseRotaryEmbedding(config=config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_in

    def set_input_embeddings(self, value):
        self.embed_in = value

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""
        Example:

        ```python
        >>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
        >>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")

        >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_in(input_ids)

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        seq_length = inputs_embeds.shape[1]
        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        next_decoder_cache = None
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            outputs = layer(
                hidden_states,
                attention_mask=causal_mask,
                position_ids=position_ids,
                head_mask=head_mask[i],
                layer_past=past_key_values,
                use_cache=use_cache,
                output_attentions=output_attentions,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
            hidden_states = outputs[0]
            if use_cache is True:
                next_decoder_cache = outputs[1]
            if output_attentions:
                all_attentions = all_attentions + (outputs[2 if use_cache else 1],)

        hidden_states = self.final_layer_norm(hidden_states)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: Union[torch.Tensor, "BlockMask"],
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                attention_mask = make_flex_block_causal_mask(attention_mask)
            return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype = input_tensor.dtype
        sequence_length = input_tensor.shape[1]
        if using_compilable_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu", "npu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


@auto_docstring(
    custom_intro="""
    GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.
    """
)
class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["embed_out.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.gpt_neox_japanese = GPTNeoXJapaneseModel(config)
        self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.embed_out

    def set_output_embeddings(self, new_embeddings):
        self.embed_out = new_embeddings

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
            ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
        >>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
        >>> config.is_decoder = True
        >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)

        >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> prediction_logits = outputs.logits
        ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.gpt_neox_japanese(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        lm_logits = self.embed_out(hidden_states)

        lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)

            lm_loss = self.loss_function(
                lm_logits,
                labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithPast(
            loss=lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def _reorder_cache(self, past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
                + layer_past[2:],
            )
        return reordered_past


__all__ = [
    "GPTNeoXJapaneseForCausalLM",
    "GPTNeoXJapaneseLayer",
    "GPTNeoXJapaneseModel",
    "GPTNeoXJapanesePreTrainedModel",
]
