o
    ZhH                     @   s   d Z ddlmZmZmZmZ ddlZddlm	Z	m
Z
mZ ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZm Z  e rSddl!Z!e "e#Z$G d	d
 d
e	Z%d
gZ&dS )z'Image processor class for EfficientNet.    )DictListOptionalUnionN   )BaseImageProcessorBatchFeatureget_size_dict)rescaleresizeto_channel_dimension_format)IMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDChannelDimension
ImageInputPILImageResamplinginfer_channel_dimension_formatis_scaled_imagemake_list_of_imagesto_numpy_arrayvalid_imagesvalidate_preprocess_arguments)
TensorTypefilter_out_non_signature_kwargsis_vision_availableloggingc                #       s4  e Zd ZdZdgZddejjdddddddddfdede	e
eef  d	ed
ede	e
eef  deeef dededede	eeee f  de	eeee f  deddf fddZejddfdejde
eef d	ede	eeef  de	eeef  dejfddZ			d#dejdeeef dede	eeef  de	eeef  f
ddZe dddddddddddddejdfdede	e de	e
eef  d
e	e de	e
eef  de	e de	e de	e de	e de	eeee f  de	eeee f  de	e d e	eeef  dede	eeef  dejjf d!d"Z  ZS )$EfficientNetImageProcessoraN  
    Constructs a EfficientNet image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in `preprocess`.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`):
            Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
        resample (`PILImageResampling` filter, *optional*, defaults to 0):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
        do_center_crop (`bool`, *optional*, defaults to `False`):
            Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
            is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`):
            Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        rescale_offset (`bool`, *optional*, defaults to `False`):
            Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be
            overridden by the `rescale_factor` parameter in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
        include_top (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image again. Should be set to True if the inputs are used for image classification.
    pixel_valuesTNFgp?	do_resizesizeresampledo_center_crop	crop_sizerescale_factorrescale_offset
do_rescaledo_normalize
image_mean	image_stdinclude_topreturnc                    s   t  jdi | |d ur|nddd}t|}|d ur|nddd}t|dd}|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
d urJ|
nt| _|d urS|nt| _|| _d S )NiZ  )heightwidthi!  r"   
param_name )super__init__r	   r   r   r    r!   r"   r%   r#   r$   r&   r   r'   r   r(   r)   )selfr   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   kwargs	__class__r/   m/var/www/auris/lib/python3.10/site-packages/transformers/models/efficientnet/image_processing_efficientnet.pyr1   W   s"   
z#EfficientNetImageProcessor.__init__imagedata_formatinput_data_formatc                 K   sT   t |}d|vsd|vrtd|  |d |d f}t|f||||d|S )a  
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        r+   r,   zFThe `size` dictionary must contain the keys `height` and `width`. Got )r   r    r8   r9   )r	   
ValueErrorkeysr   )r2   r7   r   r    r8   r9   r3   Zoutput_sizer/   r/   r6   r   {   s   #z!EfficientNetImageProcessor.resizescaleoffsetc                 K   s(   t |f|||d|}|r|d }|S )a  
        Rescale an image by a scale factor.

        If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
        1/127.5, the image is rescaled between [-1, 1].
            image = image * scale - 1

        If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
            image = image * scale

        Args:
            image (`np.ndarray`):
                Image to rescale.
            scale (`int` or `float`):
                Scale to apply to the image.
            offset (`bool`, *optional*):
                Whether to scale the image in both negative and positive directions.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        )r<   r8   r9      r
   )r2   r7   r<   r=   r8   r9   r3   Zrescaled_imager/   r/   r6   r
      s   z"EfficientNetImageProcessor.rescaleimagesreturn_tensorsc                    s  |dur|nj }durnj|dur|nj}|dur!|nj}dur*njdur3nj|
dur<|
nj}
durEnjdurNnj|durW|nj	}	dur`	nj
	t		 durm nj t dd t|}t|stdt||
| |	d
 dd |D }|rt|d rtd	 du rt|d |r	fd
d|D }|rɇ fdd|D }|rׇfdd|D }|
rfdd|D }|rfdd|D }fdd|D }d|i}t||dS )a  
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after `resize`.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
                `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
                padded with zeros and then cropped
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`):
                Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range].
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            include_top (`bool`, *optional*, defaults to `self.include_top`):
                Rescales the image again for image classification if set to True.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - `None`: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                    - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        Nr"   r-   zkInvalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.)
r%   r#   r&   r'   r(   r!   r"   r   r   r    c                 S   s   g | ]}t |qS r/   )r   .0r7   r/   r/   r6   
<listcomp>>  s    z9EfficientNetImageProcessor.preprocess.<locals>.<listcomp>r   zIt looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.c                    s   g | ]}j | d qS ))r7   r   r    r9   )r   rB   )r9   r    r2   r   r/   r6   rD   K      c                    s   g | ]
}j | d qS ))r7   r   r9   )Zcenter_croprB   )r"   r9   r2   r/   r6   rD   Q  s    c                    s   g | ]}j | d qS ))r7   r<   r=   r9   r?   rB   )r9   r#   r$   r2   r/   r6   rD   V  s    c                    s   g | ]}j | d qS )r7   meanZstdr9   	normalizerB   )r'   r(   r9   r2   r/   r6   rD   ^  rE   c                    s   g | ]}j |d  dqS )r   rF   rH   rB   )r(   r9   r2   r/   r6   rD   d  rE   c                    s   g | ]	}t | d qS ))Zinput_channel_dim)r   rB   )r8   r9   r/   r6   rD   i  s    r   )dataZtensor_type)r   r    r!   r%   r#   r$   r&   r'   r(   r)   r   r	   r"   r   r   r:   r   r   loggerZwarning_oncer   r   )r2   r@   r   r   r    r!   r"   r%   r#   r$   r&   r'   r(   r)   rA   r8   r9   rJ   r/   )
r"   r8   r'   r(   r9   r    r#   r$   r2   r   r6   
preprocess   s~   Gz%EfficientNetImageProcessor.preprocess)TNN)__name__
__module____qualname____doc__Zmodel_input_namesPILZImageZNEARESTboolr   r   strintr   r   floatr   r1   npZndarrayr   r   r
   r   ZFIRSTr   r   rL   __classcell__r/   r/   r4   r6   r   .   s    &
	
(

4

(	
r   )'rP   typingr   r   r   r   numpyrV   Zimage_processing_utilsr   r   r	   Zimage_transformsr
   r   r   Zimage_utilsr   r   r   r   r   r   r   r   r   r   r   utilsr   r   r   r   rQ   Z
get_loggerrM   rK   r   __all__r/   r/   r/   r6   <module>   s   4
  
E