o
    Zhh                     @   s   d Z ddlZddlmZmZ ddlmZ ddlmZ e	e
Zg dZg dZd	gZg d
Zdd Zdd Zdd Zdd ZeeeedZG dd deZG dd deZG dd deZg dZdS )zJukebox configuration    N)ListUnion   )PretrainedConfig)logging)O
block_attntranspose_block_attnprev_block_attnr   r   r	   r   r   r	   r   r   r	   r   r   r	   r   r   r	   cross_attentionr   r   r	   r   r   r	   r   r   r	   r
   r   r   r	   r   r   r	   r   r   r	   r
   r   r   r	   r   r   r	   r   r   r	   r
   r   r   r	   r   r   r	   r   r   r	   r
   r   r   r	   r   r   r	   r   r   r	   r
   r   r   r	   r   r   r	   r   r   r	   r
   )r   r   r	   Zdense_attention)
prime_attnr   Z
dense_attnc                 C   s   t d S )Nr   )_FullDenseAttentionlayer r   k/var/www/auris/lib/python3.10/site-packages/transformers/models/deprecated/jukebox/configuration_jukebox.pyfull_dense_attentionq   s   r   c                 C      t | d  S )N   )_RawColumnPreviousRowAttentionr   r   r   r   !raw_column_previous_row_attentionu      r   c                 C   r   )NO   )_LARGE_ATTENTIONr   r   r   r    large_separated_enc_dec_w_lyricsy   r   r   c                 C   s$   | d dkrt | d  S t| d  S )N      r   )_PrimePrimeDenseAttentionr   r   r   r   r   enc_dec_with_lyrics}   s   r   )r   r   r   r   c                *   @   s   e Zd ZdZdZdddZdddd	d
ddddddddddddddddddddgdddddddddddg dg ddd dddf*d!d"Ze	d(d#ee	e
jf d$d%fd&d'ZdS ))JukeboxPriorConfiga"  
        This is the configuration class to store the configuration of a [`JukeboxPrior`]. It is used to instantiate a
        `JukeboxPrior` according to the specified arguments, defining the model architecture. Instantiating a
        configuration with the defaults will yield a similar configuration to that of the top level prior from the
        [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox
    -1b-lyrics) architecture.

        Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
        documentation from [`PretrainedConfig`] for more information.



    Args:
        act_fn (`str`, *optional*, defaults to `"quick_gelu"`):
            Activation function.
        alignment_head (`int`, *optional*, defaults to 2):
            Head that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio
            alignment
        alignment_layer (`int`, *optional*, defaults to 68):
            Index of the layer that is responsible of the alignment between lyrics and music. Only used to compute the
            lyric to audio alignment
        attention_multiplier (`float`, *optional*, defaults to 0.25):
            Multiplier coefficient used to define the hidden dimension of the attention layers. 0.25 means that
            0.25*width of the model will be used.
        attention_pattern (`str`, *optional*, defaults to `"enc_dec_with_lyrics"`):
            Which attention pattern to use for the decoder/
        attn_dropout (`int`, *optional*, defaults to 0):
            Dropout probability for the post-attention layer dropout in the decoder.
        attn_res_scale (`bool`, *optional*, defaults to `False`):
            Whether or not to scale the residuals in the attention conditioner block.
        blocks (`int`, *optional*, defaults to 64):
            Number of blocks used in the `block_attn`. A sequence of length seq_len is factored as `[blocks, seq_len //
            blocks]` in the `JukeboxAttention` layer.
        conv_res_scale (`int`, *optional*):
            Whether or not to scale the residuals in the conditioner block. Since the top level prior does not have a
            conditioner, the default value is to None and should not be modified.
        num_layers (`int`, *optional*, defaults to 72):
            Number of layers of the transformer architecture.
        emb_dropout (`int`, *optional*, defaults to 0):
            Embedding dropout used in the lyric decoder.
        encoder_config (`JukeboxPriorConfig`, *optional*) :
            Configuration of the encoder which models the prior on the lyrics.
        encoder_loss_fraction (`float`, *optional*, defaults to 0.4):
            Multiplication factor used in front of the lyric encoder loss.
        hidden_size (`int`, *optional*, defaults to 2048):
            Hidden dimension of the attention layers.
        init_scale (`float`, *optional*, defaults to 0.2):
            Initialization scales for the prior modules.
        is_encoder_decoder (`bool`, *optional*, defaults to `True`):
            Whether or not the prior is an encoder-decoder model. In case it is not, and `nb_relevant_lyric_tokens` is
            greater than 0, the `encoder` args should be specified for the lyric encoding.
        mask (`bool`, *optional*, defaults to `False`):
            Whether or not to mask the previous positions in the attention.
        max_duration (`int`, *optional*, defaults to 600):
            Maximum supported duration of the generated song in seconds.
        max_nb_genres (`int`, *optional*, defaults to 1):
            Maximum number of genres that can be used to condition the model.
        merged_decoder (`bool`, *optional*, defaults to `True`):
            Whether or not the decoder and the encoder inputs are merged. This is used for the separated
            encoder-decoder architecture
        metadata_conditioning (`bool`, *optional*, defaults to `True)`:
            Whether or not to condition on the artist and genre metadata.
        metadata_dims (`List[int]`, *optional*, defaults to `[604, 7898]`):
            Number of genres and the number of artists that were used to train the embedding layers of the prior
            models.
        min_duration (`int`, *optional*, defaults to 0):
            Minimum duration of the generated audio on which the model was trained.
        mlp_multiplier (`float`, *optional*, defaults to 1.0):
            Multiplier coefficient used to define the hidden dimension of the MLP layers. 0.25 means that 0.25*width of
            the model will be used.
        music_vocab_size (`int`, *optional*, defaults to 2048):
            Number of different music tokens. Should be similar to the `JukeboxVQVAEConfig.nb_discrete_codes`.
        n_ctx (`int`, *optional*, defaults to 6144):
            Number of context tokens for each prior. The context tokens are the music tokens that are attended to when
            generating music tokens.
        n_heads (`int`, *optional*, defaults to 2):
                Number of attention heads.
        nb_relevant_lyric_tokens (`int`, *optional*, defaults to 384):
            Number of lyric tokens that are used when sampling a single window of length `n_ctx`
        res_conv_depth (`int`, *optional*, defaults to 3):
            Depth of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the
            `JukeboxMusicTokenConditioner`.
        res_conv_width (`int`, *optional*, defaults to 128):
            Width of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the
            `JukeboxMusicTokenConditioner`.
        res_convolution_multiplier (`int`, *optional*, defaults to 1):
            Multiplier used to scale the `hidden_dim` of the `JukeboxResConv1DBlock`.
        res_dilation_cycle (`int`, *optional*):
            Dilation cycle used to define the `JukeboxMusicTokenConditioner`. Usually similar to the ones used in the
            corresponding level of the VQVAE. The first prior does not use it as it is not conditioned on upper level
            tokens.
        res_dilation_growth_rate (`int`, *optional*, defaults to 1):
            Dilation grow rate used between each convolutionnal block of the `JukeboxMusicTokenConditioner`
        res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`):
            Downsampling rates used in the audio conditioning network
        res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
            Striding used in the audio conditioning network
        resid_dropout (`int`, *optional*, defaults to 0):
            Residual dropout used in the attention pattern.
        sampling_rate (`int`, *optional*, defaults to 44100):
            Sampling rate used for training.
        spread (`int`, *optional*):
            Spread used in the `summary_spread_attention` pattern
        timing_dims (`int`, *optional*, defaults to 64):
            Dimension of the timing embedding.
        zero_out (`bool`, *optional*, defaults to `False`):
            Whether or not to zero out convolution weights when initializing.
    Zjukebox_priorZn_positionsZn_head)Zmax_position_embeddingsZnum_attention_headsZ
quick_gelur      D   g      ?r   F@   NH   g?   皙?TP   iX     i\  i  g      ?i   i  r      r   r   r   r   r   r   D  c+           ,      K   s  || _ || _|| _|| _|| _|| _|| _|	| _|
| _|| _	|| _
|| _|d ur1tdi || _nd | _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| | _|!| _ |"| _!|#| _"|$| _#|%| _$|&| _%|'| _&|(| _'|)| _(|| _)|*| _*d S )Nr   )+act_fnalignment_headalignment_layerattention_multiplierattention_patternattn_dropoutattn_res_scaleblocksconv_res_scale
num_layersemb_dropoutmusic_vocab_sizer   encoder_configencoder_loss_fraction
init_scaleis_encoder_decoderlyric_vocab_sizelevelmaskmax_durationmax_nb_genresmerged_decodermetadata_conditioningmetadata_dimsmin_durationmlp_multipliern_ctxn_headsnb_relevant_lyric_tokensres_conv_depthres_conv_widthres_convolution_multiplierres_dilation_cycleres_dilation_growth_rateres_downs_tres_strides_tresid_dropoutsampling_ratespreadtiming_dimshidden_sizezero_out),selfr+   r<   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r7   r8   rS   r9   r:   r;   r=   r>   r?   r@   rA   rB   rC   rD   r6   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rT   kwargsr   r   r   __init__   sX   .
zJukeboxPriorConfig.__init__pretrained_model_name_or_pathreturnr   c                 K   s   |  | | j|fi |\}}|ddkr|d|  }d|v r=t| dr=|d | jkr=td|d  d| j d | j|fi |S )N
model_typejukeboxprior_You are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.Z_set_token_in_kwargsZget_config_dictgethasattrrZ   loggerwarning	from_dict)clsrX   r<   rV   config_dictr   r   r   from_pretrained[  s   
 z"JukeboxPriorConfig.from_pretrained)r   )__name__
__module____qualname____doc__rZ   Zattribute_maprW   classmethodr   strosPathLikerh   r   r   r   r   r      sp    m
\r   c                   @   sv   e Zd ZdZdZddddddg d	d
dg dddddd
g dg ddddfddZedeee	j
f ddfddZdS )JukeboxVQVAEConfiga  
    This is the configuration class to store the configuration of a [`JukeboxVQVAE`]. It is used to instantiate a
    `JukeboxVQVAE` according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the VQVAE from
    [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        act_fn (`str`, *optional*, defaults to `"relu"`):
            Activation function of the model.
        nb_discrete_codes (`int`, *optional*, defaults to 2048):
            Number of codes of the VQVAE.
        commit (`float`, *optional*, defaults to 0.02):
            Commit loss multiplier.
        conv_input_shape (`int`, *optional*, defaults to 1):
            Number of audio channels.
        conv_res_scale (`bool`, *optional*, defaults to `False`):
            Whether or not to scale the residuals of the `JukeboxResConv1DBlock`.
        embed_dim (`int`, *optional*, defaults to 64):
            Embedding dimension of the codebook vectors.
        hop_fraction (`List[int]`, *optional*, defaults to `[0.125, 0.5, 0.5]`):
            Fraction of non-intersecting window used when continuing the sampling process.
        levels (`int`, *optional*, defaults to 3):
            Number of hierarchical levels that used in the VQVAE.
        lmu (`float`, *optional*, defaults to 0.99):
            Used in the codebook update, exponential moving average coefficient. For more detail refer to Appendix A.1
            of the original [VQVAE paper](https://arxiv.org/pdf/1711.00937v2.pdf)
        multipliers (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
            Depth and width multipliers used for each level. Used on the `res_conv_width` and `res_conv_depth`
        res_conv_depth (`int`, *optional*, defaults to 4):
            Depth of the encoder and decoder block. If no `multipliers` are used, this is the same for each level.
        res_conv_width (`int`, *optional*, defaults to 32):
            Width of the encoder and decoder block. If no `multipliers` are used, this is the same for each level.
        res_convolution_multiplier (`int`, *optional*, defaults to 1):
            Scaling factor of the hidden dimension used in the `JukeboxResConv1DBlock`.
        res_dilation_cycle (`int`, *optional*):
            Dilation cycle value used in the `JukeboxResnet`. If an int is used, each new Conv1 block will have a depth
            reduced by a power of `res_dilation_cycle`.
        res_dilation_growth_rate (`int`, *optional*, defaults to 3):
            Resnet dilation growth rate used in the VQVAE (dilation_growth_rate ** depth)
        res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`):
            Downsampling rate for each level of the hierarchical VQ-VAE.
        res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
            Stride used for each level of the hierarchical VQ-VAE.
        sample_length (`int`, *optional*, defaults to 1058304):
            Provides the max input shape of the VQVAE. Is used to compute the input shape of each level.
        init_scale (`float`, *optional*, defaults to 0.2):
            Initialization scale.
        zero_out (`bool`, *optional*, defaults to `False`):
            Whether or not to zero out convolution weights when initializing.
    Zjukebox_vqvaeZrelur#   g{Gz?r&   Fr!   )g      ?      ?rr   r   gGz?)r   r&   r&   r       Nr(   r)   i & r$   c                 K   s|   || _ || _|| _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|| _|| _|	| _|| _|| _|| _|| _|| _d S )N)hop_fractionconv_input_shapesample_lengthlevels	embed_dimnb_discrete_codesrI   rH   rJ   rL   rK   multipliersrM   rN   lmucommitr3   r+   r9   rT   )rU   r+   ry   r|   ru   r3   rx   rt   rw   r{   rz   rH   rI   rJ   rK   rL   rM   rN   rv   r9   rT   rV   r   r   r   rW     s(   
zJukeboxVQVAEConfig.__init__rX   rY   r   c                 K   s   |  | | j|fi |\}}|ddkr|d }d|v r:t| dr:|d | jkr:td|d  d| j d | j|fi |S )NrZ   r[   vqvae_configr]   r^   r_   r`   )rf   rX   rV   rg   r   r   r   rh     s   
 z"JukeboxVQVAEConfig.from_pretrained)ri   rj   rk   rl   rZ   rW   rm   r   rn   ro   rp   rh   r   r   r   r   rq   p  s4    6
/"rq   c                       s^   e Zd ZdZdZ										
d fdd	Zedee de	fddZ
 fddZ  ZS )JukeboxConfigaW  
    This is the configuration class to store the configuration of a [`JukeboxModel`].

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the defaults will
    yield a similar configuration to that of
    [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture.


    The downsampling and stride are used to determine downsampling of the input sequence. For example, downsampling =
    (5,3), and strides = (2, 2) will downsample the audio by 2^5 = 32 to get the first level of codes, and 2**8 = 256
    to get the second level codes. This is mostly true for training the top level prior and the upsamplers.

    Args:
        vqvae_config (`JukeboxVQVAEConfig`, *optional*):
            Configuration for the `JukeboxVQVAE` model.
        prior_config_list (`List[JukeboxPriorConfig]`, *optional*):
            List of the configs for each of the `JukeboxPrior` of the model. The original architecture uses 3 priors.
        nb_priors (`int`, *optional*, defaults to 3):
            Number of prior models that will sequentially sample tokens. Each prior is conditional auto regressive
            (decoder) model, apart from the top prior, which can include a lyric encoder. The available models were
            trained using a top prior and 2 upsampler priors.
        sampling_rate (`int`, *optional*, defaults to 44100):
            Sampling rate of the raw audio.
        timing_dims (`int`, *optional*, defaults to 64):
            Dimensions of the JukeboxRangeEmbedding layer which is equivalent to traditional positional embedding
            layer. The timing embedding layer converts the absolute and relative position in the currently sampled
            audio to a tensor of length `timing_dims` that will be added to the music tokens.
        min_duration (`int`, *optional*, defaults to 0):
            Minimum duration of the audios to generate
        max_duration (`float`, *optional*, defaults to 600.0):
            Maximum duration of the audios to generate
        max_nb_genres (`int`, *optional*, defaults to 5):
            Maximum number of genres that can be used to condition a single sample.
        metadata_conditioning (`bool`, *optional*, defaults to `True`):
            Whether or not to use metadata conditioning, corresponding to the artist, the genre and the min/maximum
            duration.

    Example:

    ```python
    >>> from transformers import JukeboxModel, JukeboxConfig

    >>> # Initializing a Jukebox configuration
    >>> configuration = JukeboxConfig()

    >>> # Initializing a model from the configuration
    >>> model = JukeboxModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    r[   Nr   r*   r!   r        @   Tc
                    s   |d u ri }t d tdi || _|d ur dd |D | _n-g | _t|D ]%}|
d| d }|d u rAi }t d| d | jtdi | q'| jj	| _	|| _
|| _|| _|| _|| _|| _|	| _t jdi |
 d S )NzHvqvae_config is None. initializing the JukeboxVQVAE with default values.c                 S   s   g | ]	}t d i |qS )r   )r   ).0prior_configr   r   r   
<listcomp>7  s    z*JukeboxConfig.__init__.<locals>.<listcomp>r\   zQ's  config is None. Initializing the JukeboxPriorConfig list with default values.r   )rc   inforq   r}   prior_configsrangepopappendr   rt   	nb_priorsr?   rP   rR   rC   r>   rA   superrW   )rU   r}   prior_config_listr   rP   rR   rC   r>   r?   rA   rV   Z	prior_idxr   	__class__r   r   rW   $  s0   


zJukeboxConfig.__init__r   r}   c                 K   s&   dd |D }| d||  d|S )z
        Instantiate a [`JukeboxConfig`] (or a derived class) from clip text model configuration and clip vision model
        configuration.

        Returns:
            [`JukeboxConfig`]: An instance of a configuration object
        c                 S      g | ]}|  qS r   to_dictr   configr   r   r   r   [      z.JukeboxConfig.from_configs.<locals>.<listcomp>)r   Zvqvae_config_dictNr   r   )rf   r   r}   rV   r   r   r   r   from_configsR  s   	zJukeboxConfig.from_configsc                    s&   t   }dd |dD |d< |S )Nc                 S   r   r   r   r   r   r   r   r   a  r   z)JukeboxConfig.to_dict.<locals>.<listcomp>r   r   )r   r   r   )rU   resultr   r   r   r   ^  s   
zJukeboxConfig.to_dict)	NNr   r*   r!   r   r   r   T)ri   rj   rk   rl   rZ   rW   rm   r   r   rq   r   r   __classcell__r   r   r   r   r~     s     6.r~   )r~   r   rq   )rl   ro   typingr   r   Zconfiguration_utilsr   utilsr   Z
get_loggerri   rc   r   r   r   r   r   r   r   r   ZATTENTION_PATTERNSr   rq   r~   __all__r   r   r   r   <module>   s0   
Q f{z