o
    ZŽhY$  ã                   @   s‚   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ e e¡ZG d	d
„ d
eƒZG dd„ de
ƒZd
dgZdS )z"Data2VecVision model configurationé    ©ÚOrderedDict)ÚMapping)Úversioné   )ÚPretrainedConfig)Ú
OnnxConfig)Úloggingc                       sd   e Zd ZdZdZddddddddd	d
dddddddddg d¢g d¢ddddddf‡ fdd„	Z‡  ZS )ÚData2VecVisionConfigaJ  
    This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate
    an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Data2VecVision
    [facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        use_mask_token (`bool`, *optional*, defaults to `False`):
            Whether to use a mask token for masked image modeling.
        use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to use BERT-style absolute position embeddings.
        use_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use T5-style relative position embeddings in the self-attention layers.
        use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
        layer_scale_init_value (`float`, *optional*, defaults to 0.1):
            Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate per sample (when applied in the main path of residual layers).
        use_mean_pooling (`bool`, *optional*, defaults to `True`):
            Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
            CLS token, before applying the classification head.
        out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
            Indices of the feature maps to use for semantic segmentation.
        pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
            Pooling scales used in Pooling Pyramid Module applied on the last feature map.
        use_auxiliary_head (`bool`, *optional*, defaults to `True`):
            Whether to use an auxiliary head during training.
        auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
            Weight of the cross-entropy loss of the auxiliary head.
        auxiliary_channels (`int`, *optional*, defaults to 256):
            Number of channels to use in the auxiliary head.
        auxiliary_num_convs (`int`, *optional*, defaults to 1):
            Number of convolutional layers to use in the auxiliary head.
        auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
            Whether to concatenate the output of the auxiliary head with the input before the classification layer.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.

    Example:

    ```python
    >>> from transformers import Data2VecVisionConfig, Data2VecVisionModel

    >>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration
    >>> configuration = Data2VecVisionConfig()

    >>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration
    >>> model = Data2VecVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```zdata2vec-visioni   é   i   Zgelug        g{®Gáz”?gê-™—q=éà   é   r   Fgš™™™™™¹?T)r   é   é   é   )é   é   r   é   gš™™™™™Ù?é   r   éÿ   c                    s¸   t ƒ jdi |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N© )ÚsuperÚ__init__Úhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚlayer_norm_epsÚ
image_sizeÚ
patch_sizeÚnum_channelsÚuse_mask_tokenÚ use_absolute_position_embeddingsÚuse_relative_position_biasÚ!use_shared_relative_position_biasÚlayer_scale_init_valueÚdrop_path_rateÚuse_mean_poolingÚout_indicesÚpool_scalesÚuse_auxiliary_headÚauxiliary_loss_weightÚauxiliary_channelsÚauxiliary_num_convsÚauxiliary_concat_inputÚsemantic_loss_ignore_index)Úselfr   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   Úkwargs©Ú	__class__r   úi/var/www/auris/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.pyr   p   s8   
zData2VecVisionConfig.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r6   r8   r
      s>    Oär
   c                   @   sJ   e Zd Ze d¡Zedeeee	ef f fdd„ƒZ
edefdd„ƒZdS )ÚData2VecVisionOnnxConfigz1.11Úreturnc                 C   s   t ddddddœfgƒS )NZpixel_valuesÚbatchr$   ÚheightÚwidth)r   r   r   r   r   ©r4   r   r   r8   Úinputsµ   s   ÿÿzData2VecVisionOnnxConfig.inputsc                 C   s   dS )Ng-Cëâ6?r   rC   r   r   r8   Úatol_for_validation½   s   z,Data2VecVisionOnnxConfig.atol_for_validationN)r9   r:   r;   r   ÚparseZtorch_onnx_minimum_versionÚpropertyr   ÚstrÚintrD   ÚfloatrE   r   r   r   r8   r>   ²   s    
 r>   N)r<   Úcollectionsr   Útypingr   Ú	packagingr   Zconfiguration_utilsr   Zonnxr   Úutilsr	   Z
get_loggerr9   Úloggerr
   r>   Ú__all__r   r   r   r8   Ú<module>   s   
 