# coding=utf-8
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Bamba model."""

from functools import partial
from typing import Optional, Tuple, TypedDict, Union

import torch
import torch.utils.checkpoint
from torch import nn

import transformers.models.jamba.modeling_jamba as modeling_jamba
from transformers.activations import ACT2FN
from transformers.models.jamba.modeling_jamba import JambaAttentionDecoderLayer
from transformers.models.llama.modeling_llama import (
    LlamaAttention,
    LlamaForCausalLM,
    LlamaMLP,
    LlamaRMSNorm,
    LlamaRotaryEmbedding,
    rotate_half,
)
from transformers.models.mamba2.modeling_mamba2 import (
    MambaRMSNormGated,
    pad_tensor_by_size,
    reshape_into_chunks,
    segment_sum,
)

from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
    auto_docstring,
    can_return_tuple,
    logging,
)
from ...utils.import_utils import is_causal_conv1d_available, is_flash_attn_2_available, is_mamba_2_ssm_available
from .configuration_bamba import BambaConfig


if is_flash_attn_2_available():
    pass

if is_mamba_2_ssm_available():
    from mamba_ssm.ops.triton.selective_state_update import selective_state_update
    from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
    selective_state_update = None

if is_causal_conv1d_available():
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
    causal_conv1d_update, causal_conv1d_fn = None, None

is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))


logger = logging.get_logger(__name__)


class BambaFlashAttentionKwargs(TypedDict, total=False):
    """
    Keyword arguments for advanced Flash Attention, causal-conv1d, and mamba_ssm kernel usage.
    Use cases include padding-free training and fewer `torch.compile` graph breaks.

    Attributes:
        cu_seq_lens_q (`torch.LongTensor`)
            Gets cumulative sequence length for query state.
        cu_seq_lens_k (`torch.LongTensor`)
            Gets cumulative sequence length for key state.
        max_length_q (`int`):
            Maximum sequence length for query state.
        max_length_k (`int`):
            Maximum sequence length for key state.
        seq_idx (`torch.IntTensor):
            Index of each packed sequence.
    """

    cu_seq_lens_q: torch.LongTensor
    cu_seq_lens_k: torch.LongTensor
    max_length_q: int
    max_length_k: int
    seq_idx: torch.IntTensor


# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache for the v2 mixer
class HybridMambaAttentionDynamicCache(modeling_jamba.HybridMambaAttentionDynamicCache):
    """
    A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
    (which has a constant shape regardless of seq_len).

    This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
    and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
    For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
    while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
    For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
    while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
    and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
    """

    def __init__(self, config: BambaConfig, batch_size, dtype=torch.float16, device=None):
        super().__init__(config, batch_size, dtype, device)
        self.layers_block_type = config.layers_block_type
        self.has_previous_state = False  # only used by mamba
        conv_kernel_size = config.mamba_d_conv
        ssm_state_size = config.mamba_d_state

        self.conv_states = []
        self.ssm_states = []
        self.transformer_layers = []
        for i in range(config.num_hidden_layers):
            if self.layers_block_type[i] == "mamba":
                self.conv_states += [
                    torch.zeros(
                        batch_size,
                        (config.mamba_expand * config.hidden_size + 2 * config.mamba_n_groups * ssm_state_size),
                        conv_kernel_size,
                        device=device,
                        dtype=dtype,
                    )
                ]
                self.ssm_states += [
                    torch.zeros(
                        batch_size,
                        config.mamba_n_heads,
                        config.mamba_d_head,
                        ssm_state_size,
                        device=device,
                        dtype=dtype,
                    )
                ]
            else:
                self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
                self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
                self.transformer_layers.append(i)

        self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
        self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]


class BambaRotaryEmbedding(LlamaRotaryEmbedding):
    pass


# Adapted from transformers.models.glm.modular_glm.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Removes the interleaving of cos and sin from GLM

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)

    # Keep half or full tensor for later concatenation
    rotary_dim = cos.shape[-1]
    q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
    k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]

    # Apply rotary embeddings on the first half or full tensor
    q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
    k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)

    # Concatenate back to full shape
    q_embed = torch.cat([q_embed, q_pass], dim=-1)
    k_embed = torch.cat([k_embed, k_pass], dim=-1)
    return q_embed, k_embed


class BambaAttention(LlamaAttention):
    pass


class BambaRMSNormGated(MambaRMSNormGated):
    pass


def apply_mask_to_padding_states(hidden_states, attention_mask):
    """
    Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
    """
    if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
        dtype = hidden_states.dtype
        hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)

    return hidden_states


# Adapted from transformers.models.mamba2.modeling_mamba2.Mamba2Mixer
class BambaMixer(nn.Module):
    """
    Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
    A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
    ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
    and is why Mamba is called **selective** state spaces)

    The are a few differences between this and Mamba2Mixer:
    - The variable use_precomputed_states is slightly different due to the HybridCache structure
    - There's a few non-obvious bugs fixed with batching in the slow path that exist in main
    - Some extra variables that our layer doesn't need have been removed
    - We ported most of the refactors in https://github.com/huggingface/transformers/pull/35154, which is (as of Dec 18, 2024) unmerged
    """

    def __init__(self, config: BambaConfig, layer_idx: int):
        super().__init__()
        self.num_heads = config.mamba_n_heads
        self.hidden_size = config.hidden_size
        self.ssm_state_size = config.mamba_d_state
        self.conv_kernel_size = config.mamba_d_conv
        self.intermediate_size = int(config.mamba_expand * self.hidden_size)
        self.layer_idx = layer_idx
        self.use_conv_bias = config.mamba_conv_bias
        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]
        self.use_bias = config.mamba_proj_bias

        self.layer_norm_epsilon = config.rms_norm_eps

        self.n_groups = config.mamba_n_groups
        self.head_dim = config.mamba_d_head
        self.chunk_size = config.mamba_chunk_size

        # FIXME:
        self.time_step_limit = (0.0, float("inf"))
        self.time_step_min = 0.001
        self.time_step_max = 0.1

        self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
        self.conv1d = nn.Conv1d(
            in_channels=self.conv_dim,
            out_channels=self.conv_dim,
            bias=config.mamba_conv_bias,
            kernel_size=self.conv_kernel_size,
            groups=self.conv_dim,
            padding=self.conv_kernel_size - 1,
        )

        # projection of the input hidden states
        projection_size = self.intermediate_size + self.conv_dim + self.num_heads
        self.in_proj = nn.Linear(
            self.hidden_size,
            projection_size,
            bias=self.use_bias,
        )
        # selective projection used to make dt, B and C input dependent

        # time step projection (discretization)
        # instantiate once and copy inv_dt in init_weights of PretrainedModel
        self.dt_bias = nn.Parameter(torch.ones(self.num_heads))

        # S4D real initialization. These are not discretized!
        # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
        A = torch.arange(1, self.num_heads + 1)
        self.A_log = nn.Parameter(torch.log(A))
        self.A_log._no_weight_decay = True
        self.norm = BambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
        self.D = nn.Parameter(torch.ones(self.num_heads))
        self.D._no_weight_decay = True

        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)

        if not is_fast_path_available:
            logger.warning_once(
                "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
                " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
                " https://github.com/Dao-AILab/causal-conv1d"
            )
        else:
            logger.warning_once("The fast path for Bamba will be used when running the model on a GPU")

    def cuda_kernels_forward(
        self,
        hidden_states: torch.Tensor,
        cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        seq_idx: Optional[torch.IntTensor] = None,
    ):
        # 1. Gated MLP's linear projection
        hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
        projected_states = self.in_proj(hidden_states)

        # Set up dimensions for reshapes later
        batch_size, seq_len, _ = hidden_states.shape
        groups_time_state_size = self.n_groups * self.ssm_state_size

        use_precomputed_states = (
            cache_params is not None
            and cache_params.has_previous_state
            and seq_len == 1
            and cache_params.conv_states[self.layer_idx].shape[0]
            == cache_params.ssm_states[self.layer_idx].shape[0]
            == batch_size
            and cache_position is not None
            and cache_position[0] > 0
        )

        # getting projected states from cache if it exists
        if use_precomputed_states:
            gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
                [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
            )

            # 2. Convolution sequence transformation
            hidden_states_B_C = causal_conv1d_update(
                hidden_states_B_C,
                cache_params.conv_states[self.layer_idx],
                self.conv1d.weight.squeeze(1),
                self.conv1d.bias,
                self.activation,
            )

            hidden_states, B, C = torch.split(
                hidden_states_B_C,
                [self.intermediate_size, groups_time_state_size, groups_time_state_size],
                dim=-1,
            )

            # 3. SSM transformation
            A = -torch.exp(self.A_log.float())  # (nheads,)
            A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
            dt = dt[:, :, None].expand(-1, -1, self.head_dim)
            dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
            D = self.D[:, None, ...].expand(-1, self.head_dim)
            B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
            C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
            hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
            hidden_states = selective_state_update(
                cache_params.ssm_states[self.layer_idx],
                hidden_states_reshaped,
                dt,
                A,
                B,
                C,
                D,
                z=None,
                dt_bias=dt_bias,
                dt_softplus=True,
            )
            hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
            hidden_states = self.norm(hidden_states, gate)

            # 4. Final linear projection
            out = self.out_proj(hidden_states)[:, None, ...]
        # Fused calculations or step by step if no initialized cache is found
        else:
            A = -torch.exp(self.A_log.float())  # (num_heads) or (intermediate_size, state_size)
            dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}

            # 2-4. Fused kernel for conv1d, SSM, and the final projection
            if self.training and cache_params is None:
                out = mamba_split_conv1d_scan_combined(
                    projected_states,
                    self.conv1d.weight.squeeze(1),
                    self.conv1d.bias,
                    self.dt_bias,
                    A,
                    D=self.D,
                    chunk_size=self.chunk_size,
                    seq_idx=seq_idx,
                    activation=self.activation,
                    rmsnorm_weight=self.norm.weight,
                    rmsnorm_eps=self.norm.variance_epsilon,
                    outproj_weight=self.out_proj.weight,
                    outproj_bias=self.out_proj.bias,
                    headdim=self.head_dim,
                    ngroups=self.n_groups,
                    norm_before_gate=False,
                    return_final_states=False,
                    **dt_limit_kwargs,
                )

            else:
                gate, hidden_states_B_C, dt = projected_states.split(
                    [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
                )

                # 2. Convolution sequence transformation
                # Init cache
                if cache_params is not None:
                    # storing the states
                    # If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
                    # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
                    hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
                    conv_states = nn.functional.pad(
                        hidden_states_B_C_transposed,
                        (self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
                    )
                    cache_params.conv_states[self.layer_idx].copy_(conv_states)

                if self.activation not in ["silu", "swish"]:
                    hidden_states_B_C = self.act(
                        self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
                    )
                else:
                    hidden_states_B_C = causal_conv1d_fn(
                        x=hidden_states_B_C.transpose(1, 2),
                        weight=self.conv1d.weight.squeeze(1),
                        bias=self.conv1d.bias,
                        activation=self.activation,
                        seq_idx=seq_idx,
                    ).transpose(1, 2)

                hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
                hidden_states, B, C = torch.split(
                    hidden_states_B_C,
                    [self.intermediate_size, groups_time_state_size, groups_time_state_size],
                    dim=-1,
                )

                # 3. SSM transformation
                scan_output, ssm_state = mamba_chunk_scan_combined(
                    hidden_states.view(batch_size, seq_len, -1, self.head_dim),
                    dt,
                    A,
                    B.view(batch_size, seq_len, self.n_groups, -1),
                    C.view(batch_size, seq_len, self.n_groups, -1),
                    chunk_size=self.chunk_size,
                    D=self.D,
                    z=None,
                    seq_idx=seq_idx,
                    return_final_states=True,
                    dt_bias=self.dt_bias,
                    dt_softplus=True,
                    **dt_limit_kwargs,
                )

                # Init cache
                if ssm_state is not None and cache_params is not None:
                    cache_params.ssm_states[self.layer_idx].copy_(ssm_state)

                scan_output = scan_output.view(batch_size, seq_len, -1)
                # Multiply "gate" branch and apply extra normalization layer
                scan_output = self.norm(scan_output, gate)

                # 4. Final linear projection
                out = self.out_proj(scan_output)
        return out

    # fmt: off
    def torch_forward(
        self,
        input_states,
        cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        batch_size, seq_len, _ = input_states.shape
        dtype = input_states.dtype

        # 1. Gated MLP's linear projection
        input_states = apply_mask_to_padding_states(input_states, attention_mask)
        projected_states = self.in_proj(input_states)
        gate, hidden_states_B_C, dt = projected_states.split(
                [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
        )

        use_precomputed_states = (
            cache_params is not None
            and cache_params.has_previous_state
            and seq_len == 1
            and cache_params.conv_states[self.layer_idx].shape[0]
            == cache_params.ssm_states[self.layer_idx].shape[0]
            == batch_size
            and cache_position is not None
            and cache_position[0] > 0
        )

        # 2. Convolution sequence transformation
        if use_precomputed_states:
            cache_params.conv_states[self.layer_idx] = cache_params.conv_states[self.layer_idx].roll(shifts=-1, dims=-1)
            cache_params.conv_states[self.layer_idx][:, :, -1] = hidden_states_B_C[:, 0, :].to(cache_params.conv_states[self.layer_idx].device)

            # We need to guarantee that anything regarding the cache is on the same device
            conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)

            hidden_states_B_C = torch.sum(
                conv_states * self.conv1d.weight.squeeze(1), dim=-1
            )
            if self.use_conv_bias:
                hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
            hidden_states_B_C = self.act(hidden_states_B_C)
        else:
            # Init cache
            if cache_params is not None:
                hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
                conv_states = nn.functional.pad(
                    hidden_states_B_C_transposed, (self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
                )
                cache_params.conv_states[self.layer_idx].copy_(conv_states)

            hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))

        hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
        hidden_states, B, C = torch.split(
            hidden_states_B_C,
            [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
            dim=-1
        )

        # 3. SSM transformation
        A = -torch.exp(self.A_log.float())                            # [num_heads]
        if use_precomputed_states:
            # We need to guarantee that anything regarding the cache is on the same device
            cache_device = cache_params.ssm_states[self.layer_idx].device

            # Note: there is no need to pad parameter matrices here, as there is just one new token
            # for batched generation
            dt = dt[:, 0, :][:, None, ...]
            dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
            # [num_heads] -> [num_heads, head_dim]
            dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)

            dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
            dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
            A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
            # [bsz, num_heads, head_dim, state_size]
            dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)

            # Discretize B
            # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
            # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
            B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
            B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
            B = B.reshape(batch_size, -1, B.shape[-1])
            # [bsz, num_heads, head_dim, state_size]
            dB = dt[..., None] * B[..., None, :]

            # Discretize x into dB
            # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
            hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
            dBx = (dB * hidden_states[..., None]).to(device=cache_device)

            # State calculation
            cache_params.ssm_states[self.layer_idx].copy_(
                cache_params.ssm_states[self.layer_idx] * dA + dBx
            )

            # Subsequent output
            # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
            C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
            C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
            C = C.reshape(batch_size, -1, C.shape[-1])
            # [bsz, num_heads, head_dim]

            ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype)  # Shape: [b, h, d, n]
            # Reshape ssm_states to merge the first two dimensions
            ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size)  # Shape: [b*h, d, n]
            C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1)  # Shape: [b*h, n, 1]
            y = torch.bmm(ssm_states_reshaped, C_reshaped)
            y = y.view(batch_size, self.num_heads, self.head_dim)

            # D skip connection
            # [num_heads] -> [num_heads, head_dim]
            D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
            y = (y + hidden_states * D).to(y.dtype)

            # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
            y = y.reshape(batch_size, -1)[:, None, ...]
        else:
            # begin ssd naive implementation without einsums
            dt = nn.functional.softplus(dt + self.dt_bias)
            dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
            hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
            B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
            C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
            B = B.repeat_interleave(self.num_heads // self.n_groups, dim=2, output_size=self.num_heads)
            C = C.repeat_interleave(self.num_heads // self.n_groups, dim=2, output_size=self.num_heads)
            pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size

            D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)

            # Discretize x and A
            hidden_states = hidden_states * dt[..., None]
            A = A.to(hidden_states.dtype) * dt

            # Rearrange into blocks/chunks
            hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]

            # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
            A = A.permute(0, 3, 1, 2)
            A_cumsum = torch.cumsum(A, dim=-1)

            # 1. Compute the output for each intra-chunk (diagonal blocks)
            # This is the analog of a causal mask
            L = torch.exp(segment_sum(A))

            # Contraction of C and B to get G (attention-weights like)
            G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :]  # shape: (b, c, l, s, h, n)
            G = G_intermediate.sum(dim=-1)  # shape: (b, c, l, s, h)

            # Compute M, equivalent to applying attention mask to weights
            M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
            M = M_intermediate.sum(dim=-1)

            # Compute Y_diag (apply to values)
            Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)

            # 2. Compute the state for each intra-chunk
            # (right term of low-rank factorization of off-diagonal blocks; B terms)
            decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
            B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
            states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)

            # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
            # (middle term of factorization of off-diag blocks; A terms)
            if use_precomputed_states:
                previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
            else:
                previous_states = torch.zeros_like(states[:, :1])
            states = torch.cat([previous_states, states], dim=1)
            decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
            decay_chunk = decay_chunk.transpose(1, 3)
            new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
            states, ssm_state = new_states[:, :-1], new_states[:, -1]

            # 4. Compute state -> output conversion per chunk
            # (left term of low-rank factorization of off-diagonal blocks; C terms)
            state_decay_out = torch.exp(A_cumsum)
            C_times_states = (C[..., None, :] * states[:, :, None, ...])
            state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
            Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])

            # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
            y = Y_diag + Y_off
            # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
            y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)

            y = y + D_residual
            # Cutting off padded chunks
            if pad_size > 0:
                y = y[:, :seq_len, :, :]
            y = y.reshape(batch_size, seq_len, -1)

            # Init cache
            if ssm_state is not None and cache_params is not None:
                cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
                cache_params.has_previous_state = True

        scan_output = self.norm(y, gate)

        # end ssd naive

        # 4. Final linear projection
        contextualized_states = self.out_proj(scan_output.to(dtype))  # [batch, seq_len, hidden_size]
        return contextualized_states
    # fmt: on

    def forward(
        self,
        hidden_states,
        cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        seq_idx: Optional[torch.IntTensor] = None,
        **kwargs,
    ):
        if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
            return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask, seq_idx)
        if seq_idx is not None:
            raise NotImplementedError(
                "`seq_idx` support requires fast path support. Please install `mamba_ssm` and `causal_conv1d`"
            )
        dtype = hidden_states.dtype
        if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
            # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
            hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)

        return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)


class BambaMLP(LlamaMLP):
    pass


class BambaRMSNorm(LlamaRMSNorm):
    pass


class BambaDecoderLayer(JambaAttentionDecoderLayer):
    def __init__(self, config: BambaConfig, layer_idx: int, layer_type: str = "mamba"):
        super().__init__()

        del self.self_attn

        num_experts = 1
        ffn_layer_class = BambaMLP if num_experts == 1 else None
        self.feed_forward = ffn_layer_class(config)

        self.layer_type = layer_type
        if layer_type == "mamba":
            self.mamba = BambaMixer(config=config, layer_idx=layer_idx)
        elif layer_type == "attention":
            self.self_attn = BambaAttention(config, layer_idx)
        else:
            raise ValueError("Invalid layer_type")

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[BambaFlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs. Can be used to provide `BambaFlashAttentionKwargs` for
                padding-free training and/or improve torch.compile performance.
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # this is a hybrid decoder layer
        if self.layer_type == "mamba":
            hidden_states = self.mamba(
                hidden_states=hidden_states,
                cache_params=past_key_value,
                cache_position=cache_position,
                attention_mask=attention_mask,
                **kwargs,
            )
            self_attn_weights = None
        elif self.layer_type == "attention":
            hidden_states, self_attn_weights = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        # residual connection after attention
        hidden_states = residual + hidden_states

        # feed-forward
        residual = hidden_states
        hidden_states = self.pre_ff_layernorm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs


@auto_docstring
class BambaPreTrainedModel(PreTrainedModel):
    config_class = BambaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["BambaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True  # Note: only supports HybridMambaAttentionDynamicCache
    _is_stateful = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, (BambaRMSNormGated, BambaRMSNorm)):
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, BambaMixer):
            module.dt_bias.data.fill_(1.0)
            module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
            module.D.data.fill_(1.0)


@auto_docstring
class BambaModel(BambaPreTrainedModel):
    def __init__(self, config: BambaConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        decoder_layers = []
        for i in range(config.num_hidden_layers):
            decoder_layers.append(BambaDecoderLayer(config, layer_idx=i, layer_type=config.layers_block_type[i]))
        self.layers = nn.ModuleList(decoder_layers)

        self._attn_implementation = config._attn_implementation
        self.final_layernorm = BambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = BambaRotaryEmbedding(config=config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[BambaFlashAttentionKwargs],
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        hidden_states = inputs_embeds

        if use_cache and past_key_values is None:
            logger.warning_once(
                "Bamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
                "provided, so no cache will be returned."
            )

        if cache_position is None:
            cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )
        mamba_mask = self._update_mamba_mask(attention_mask, cache_position)

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers:
            # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
            layer_mask = mamba_mask if decoder_layer.layer_type == "mamba" else causal_mask

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    partial(decoder_layer.__call__, **kwargs),
                    hidden_states,
                    layer_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=layer_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                    **kwargs,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                if layer_outputs[1] is not None:
                    # append attentions only of attention layers. Mamba layers return `None` as the attention weights
                    all_self_attns += (layer_outputs[1],)

        hidden_states = self.final_layernorm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if past_key_values and not past_key_values.has_previous_state:
            past_key_values.has_previous_state = True

        next_cache = None if not use_cache else past_key_values

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: HybridMambaAttentionDynamicCache,
        output_attentions: bool,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype = input_tensor.dtype
        sequence_length = input_tensor.shape[1]
        target_length = (
            attention_mask.shape[-1]
            if isinstance(attention_mask, torch.Tensor)
            else past_seen_tokens + sequence_length + 1
        )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu", "npu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_attention_mask = (attention_mask[:, None, None, :] == attention_mask[:, None, :, None])[
                    :, :, -sequence_length:, :
                ].to(dtype)
                padding_mask = causal_mask[:, :, :, :mask_length] + padding_attention_mask
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask

    def _update_mamba_mask(self, attention_mask, cache_position):
        """
        No need for zeroing states when
            1. Cached forward
            2. Attending to all inputs
        """
        mamba_mask = attention_mask
        if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
            mamba_mask = None
        return mamba_mask


class BambaForCausalLM(LlamaForCausalLM):
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, BambaForCausalLM

        >>> model = BambaForCausalLM.from_pretrained("...")
        >>> tokenizer = AutoTokenizer.from_pretrained("...")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        return super().forward(
            input_ids,
            attention_mask,
            position_ids,
            past_key_values,
            inputs_embeds,
            labels,
            use_cache,
            output_attentions,
            output_hidden_states,
            cache_position,
            logits_to_keep,
            **kwargs,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        # Overwritten -- has a unique cache type, `HybridMambaAttentionDynamicCache`

        empty_past_kv = past_key_values is None

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
        #              (we can't check exception 3 while compiling)
        if not empty_past_kv:
            if (
                inputs_embeds is not None  # Exception 1
                or cache_position[-1] >= input_ids.shape[1]  # Exception 3
            ):
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]
        else:
            past_key_values = HybridMambaAttentionDynamicCache(
                self.config, input_ids.shape[0], self.dtype, device=self.device
            )

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if not empty_past_kv:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and empty_past_kv:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "logits_to_keep": self.config.num_logits_to_keep,
                "cache_position": cache_position,
            }
        )
        return model_inputs


__all__ = ["BambaModel", "BambaForCausalLM", "BambaPreTrainedModel"]
