o
    ]ZŽh6  ã                   @   s^   d Z ddlZddlmZ g d¢Zejdd„ ƒZedƒejdd	„ ƒƒZedƒejd
d„ ƒƒZ	dS )zDegree centrality measures.é    N)Únot_implemented_for)Údegree_centralityÚin_degree_centralityÚout_degree_centralityc                    óD   t | ƒdkrdd„ | D ƒS dt | ƒd  ‰ ‡ fdd„|  ¡ D ƒ}|S )a¥  Compute the degree centrality for nodes.

    The degree centrality for a node v is the fraction of nodes it
    is connected to.

    Parameters
    ----------
    G : graph
      A networkx graph

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with degree centrality as the value.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.degree_centrality(G)
    {0: 1.0, 1: 1.0, 2: 0.6666666666666666, 3: 0.6666666666666666}

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    é   c                 S   ó   i | ]}|d “qS ©r   © ©Ú.0Únr
   r
   úX/var/www/auris/lib/python3.10/site-packages/networkx/algorithms/centrality/degree_alg.pyÚ
<dictcomp>.   ó    z%degree_centrality.<locals>.<dictcomp>ç      ð?c                    ó   i | ]	\}}||ˆ  “qS r
   r
   ©r   r   Úd©Úsr
   r   r   1   ó    )ÚlenZdegree©ÚGZ
centralityr
   r   r   r   	   s
   $r   Z
undirectedc                    r   )a
  Compute the in-degree centrality for nodes.

    The in-degree centrality for a node v is the fraction of nodes its
    incoming edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with in-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.in_degree_centrality(G)
    {0: 0.0, 1: 0.3333333333333333, 2: 0.6666666666666666, 3: 0.6666666666666666}

    See Also
    --------
    degree_centrality, out_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    r   c                 S   r   r	   r
   r   r
   r
   r   r   `   r   z(in_degree_centrality.<locals>.<dictcomp>r   c                    r   r
   r
   r   r   r
   r   r   c   r   )r   Z	in_degreer   r
   r   r   r   5   ó
   *r   c                    r   )aï  Compute the out-degree centrality for nodes.

    The out-degree centrality for a node v is the fraction of nodes its
    outgoing edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with out-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.out_degree_centrality(G)
    {0: 1.0, 1: 0.6666666666666666, 2: 0.0, 3: 0.0}

    See Also
    --------
    degree_centrality, in_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    r   c                 S   r   r	   r
   r   r
   r
   r   r   ’   r   z)out_degree_centrality.<locals>.<dictcomp>r   c                    r   r
   r
   r   r   r
   r   r   •   r   )r   Z
out_degreer   r
   r   r   r   g   r   r   )
Ú__doc__ZnetworkxÚnxZnetworkx.utils.decoratorsr   Ú__all__Z_dispatchabler   r   r   r
   r
   r
   r   Ú<module>   s    
+0