a
    e0hL                     @   s$  d Z ddgZddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZ erdd
lmZ ddlmZmZmZmZmZ eejejf ZedZedZzddlZW n ey   dZY n0 dZdZedd ZdddZdddZ dddZ!esere Z"Z#ne Z"e!Z#dS )ab  Convenient parallelization of higher order functions.

This module provides two helper functions, with appropriate fallbacks on
Python 2 and on systems lacking support for synchronization mechanisms:

- map_multiprocess
- map_multithread

These helpers work like Python 3's map, with two differences:

- They don't guarantee the order of processing of
  the elements of the iterable.
- The underlying process/thread pools chop the iterable into
  a number of chunks, so that for very long iterables using
  a large value for chunksize can make the job complete much faster
  than using the default value of 1.
map_multiprocessmap_multithread    )contextmanager)Pool)DEFAULT_POOLSIZE)PY2map)MYPY_CHECK_RUNNINGpool)CallableIterableIteratorTypeVarUnionSTNTFi c                 c   sB   z"| V  W |    |   |   n|    |   |   0 dS )z>Return a context manager making sure the pool closes properly.N)closejoin	terminater    r   J/var/www/auris/lib/python3.9/site-packages/pip/_internal/utils/parallel.pyclosing4   s    
r      c                 C   s
   t | |S )zMake an iterator applying func to each element in iterable.

    This function is the sequential fallback either on Python 2
    where Pool.imap* doesn't react to KeyboardInterrupt
    or when sem_open is unavailable.
    r   )funciterable	chunksizer   r   r   _map_fallbackB   s    r   c                 C   s<   t t }|| ||W  d   S 1 s.0    Y  dS )zChop iterable into chunks and submit them to a process pool.

    For very long iterables using a large value for chunksize can make
    the job complete much faster than using the default value of 1.

    Return an unordered iterator of the results.
    N)r   ProcessPoolimap_unorderedr   r   r   r   r   r   r   _map_multiprocessM   s    	r"   c                 C   s>   t tt}|| ||W  d   S 1 s00    Y  dS )zChop iterable into chunks and submit them to a thread pool.

    For very long iterables using a large value for chunksize can make
    the job complete much faster than using the default value of 1.

    Return an unordered iterator of the results.
    N)r   
ThreadPoolr   r    r!   r   r   r   _map_multithreadZ   s    	r$   )r   )r   )r   )$__doc____all__
contextlibr   multiprocessingr   r   Zmultiprocessing.dummyr#   pip._vendor.requests.adaptersr   Zpip._vendor.sixr   Zpip._vendor.six.movesr	   pip._internal.utils.typingr
   r   typingr   r   r   r   r   r   r   Zmultiprocessing.synchronizeImportErrorZLACK_SEM_OPENTIMEOUTr   r   r"   r$   r   r   r   r   r   r   <module>   s:   





