from __future__ import annotations  # remove after python 3.11
import warnings

from typing import List, Optional, Sequence, Tuple, TypeVar, Generic, Type
import numbers

from triton.runtime import driver

from .._C.libtriton import ir
from . import core as tl

T = TypeVar('T')
TensorTy = TypeVar('TensorTy')


class IncompatibleTypeErrorImpl(Exception):

    def __init__(self, type_a, type_b):
        self.type_a = type_a
        self.type_b = type_b
        self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__()
        super(IncompatibleTypeErrorImpl, self).__init__(self.message)


class TritonSemantic(Generic[TensorTy]):
    tensor: Type[TensorTy] = tl.tensor
    lang = tl

    builder: ir.builder

    def __init__(self, builder):
        self.builder = builder

# ===----------------------------------------------------------------------===##
# Programming Model
# ===----------------------------------------------------------------------===##

    def program_id(self, axis: int) -> TensorTy:
        if axis not in (0, 1, 2):
            raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}")
        return self.tensor(self.builder.create_get_program_id(axis), tl.int32)

    def num_programs(self, axis: int) -> TensorTy:
        if axis not in (0, 1, 2):
            raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}")
        return self.tensor(self.builder.create_get_num_programs(axis), tl.int32)

# ===----------------------------------------------------------------------===//
#                               Implicit Casting Utilities
# ===----------------------------------------------------------------------===//

    def integer_promote_impl(self, a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype:
        a_rank = a_ty.int_bitwidth
        b_rank = b_ty.int_bitwidth
        a_sn = a_ty.int_signedness
        b_sn = b_ty.int_signedness
        # Rules for signedness taken from "Usual arithmetic conversions" on
        # https://en.cppreference.com/w/c/language/conversion.
        if a_sn == b_sn:
            return a_ty if a_rank > b_rank else b_ty
        elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
            return a_ty if a_rank >= b_rank else b_ty
        elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
            return b_ty if b_rank >= a_rank else a_ty
        raise TypeError(f"unexpected signedness {a_sn} and {b_sn}")

    def computation_type_impl(self, a_ty: tl.dtype, a_is_scalar: bool, b_ty: tl.dtype, b_is_scalar: bool,
                              div_or_mod: bool) -> tl.dtype:
        # 0) For scalars we follow semantics similar to PyTorch, namely:
        # - If the scalar is of a lower or equal kind (bool < uint < int < fp),
        #   it doesn't participate in the promotion
        if a_is_scalar != b_is_scalar:
            scalar_ty, tensor_ty = (a_ty, b_ty) if a_is_scalar else (b_ty, a_ty)
            if scalar_ty.kind().value <= tensor_ty.kind().value:
                # Upcast because of 3) and 4) below!
                if div_or_mod and (tensor_ty in (tl.float16, tl.bfloat16)):
                    return tl.float32
                return tensor_ty

        # 1) if one operand is double, the other is implicitly
        #    converted to double
        if a_ty.is_fp64() or b_ty.is_fp64():
            return tl.float64
        # 2) if one operand is float, the other is implicitly
        #    converted to float
        if a_ty.is_fp32() or b_ty.is_fp32():
            return tl.float32
        # 3 ) if one operand is half, the other is implicitly converted to half
        #     unless we're doing / or %, which do not exist natively in PTX for fp16.
        #     Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp
        if a_ty.is_fp16() or b_ty.is_fp16():
            if div_or_mod:
                return tl.float32
            else:
                return tl.float16
        # 4) return bf16 only if both operands are of bf16
        if a_ty.is_bf16() and b_ty.is_bf16():
            if div_or_mod:
                return tl.float32
            else:
                return tl.bfloat16
        if a_ty.is_bf16() or b_ty.is_bf16():
            return tl.float32
        # 5) return fp16 if operands are different fp8
        if a_ty.is_fp8() and b_ty.is_fp8():
            return a_ty if a_ty == b_ty else tl.float16
        if not a_ty.is_int() or not b_ty.is_int():
            raise TypeError(f"unexpected type {a_ty} and {b_ty}")
        # 6 ) both operands are integer and undergo
        #    integer promotion
        if div_or_mod and a_ty.int_signedness != b_ty.int_signedness:
            raise TypeError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() +
                            " because they have different signedness;"
                            "this is unlikely to result in a useful answer. Cast them to the same signedness.")
        return self.integer_promote_impl(a_ty, b_ty)

    def to_tensor(self, x, check_type: bool = True):
        if isinstance(x, bool):
            return self.tensor(self.builder.get_int1(x), tl.int1)
        # Note: compile-time const integers are represented by unsigned values
        elif isinstance(x, int):
            if -2**31 <= x < 2**31:
                dtype = tl.int32
            elif 2**31 <= x < 2**32:
                dtype = tl.uint32
            elif -2**63 <= x < 2**63:
                dtype = tl.int64
            elif 2**63 <= x < 2**64:
                dtype = tl.uint64
            else:
                raise ValueError(f'Nonrepresentable integer {x}.')
            return self.scalar_constant(x, dtype=dtype)
        elif isinstance(x, float):
            min_float32 = 2**-126
            max_float32 = (2 - 2**-23) * 2**127
            abs_x = __builtins__['abs'](x)
            if abs_x == float("inf") or\
               abs_x == 0.0 or \
               x != x or \
               min_float32 <= abs_x <= max_float32:
                dtype = tl.float32
            else:
                dtype = tl.float64
            return self.scalar_constant(x, dtype=dtype)

        elif isinstance(x, tl.constexpr):
            return self.to_tensor(x.value)
        elif isinstance(x, self.tensor):
            return x
        if check_type:
            raise TypeError(f"cannot convert {x} of type {type(x)} to tensor")
        return x

# ===----------------------------------------------------------------------===//
#                               Binary Operators
# ===----------------------------------------------------------------------===//

    def check_ptr_type_impl(self, type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None:
        if type_a.is_ptr():
            if not allow_ptr_a:
                raise IncompatibleTypeErrorImpl(type_a, type_b)
            # T* + U* with T != U
            if type_b.is_ptr() and (type_a != type_b):
                raise IncompatibleTypeErrorImpl(type_a, type_b)
            # T* + float
            if type_b.is_floating():
                raise IncompatibleTypeErrorImpl(type_a, type_b)

    def binary_op_type_checking_impl(self, lhs: TensorTy | numbers.Number, rhs: TensorTy | numbers.Number,
                                     allow_lhs_ptr=False, allow_rhs_ptr=False, arithmetic_check=True,
                                     div_or_mod=False) -> Tuple[TensorTy, TensorTy]:
        lhs_is_scalar = isinstance(lhs, numbers.Number)
        rhs_is_scalar = isinstance(rhs, numbers.Number)
        if lhs_is_scalar:
            lhs_scalar = lhs
            lhs = self.to_tensor(lhs)
        if rhs_is_scalar:
            rhs_scalar = rhs
            rhs = self.to_tensor(rhs)

        # implicit typecasting
        lhs_sca_ty = lhs.type.scalar
        rhs_sca_ty = rhs.type.scalar
        self.check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr)
        self.check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr)
        if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr():
            ret_sca_ty = self.computation_type_impl(lhs_sca_ty, lhs_is_scalar, rhs_sca_ty, rhs_is_scalar, div_or_mod)
            if (lhs_is_scalar and lhs_scalar < 0 and ret_sca_ty.is_int_unsigned()
                    or rhs_is_scalar and rhs_scalar < 0 and ret_sca_ty.is_int_unsigned()):
                raise ValueError("Cannot perform a binary operation between an unsigned tensor and a negative scalar. "
                                 "Perform a explicit cast on one of them.")
            if ret_sca_ty.is_int():
                if lhs_is_scalar and not (ret_sca_ty.get_int_min_value() <= lhs_scalar <=
                                          ret_sca_ty.get_int_max_value()):
                    raise ValueError(f"Scalar {lhs_scalar} is out of range for type {ret_sca_ty}")
                if rhs_is_scalar and not (ret_sca_ty.get_int_min_value() <= rhs_scalar <=
                                          ret_sca_ty.get_int_max_value()):
                    raise ValueError(f"Scalar {rhs_scalar} is out of range for type {ret_sca_ty}")
            lhs = self.scalar_constant(lhs_scalar, dtype=ret_sca_ty) if lhs_is_scalar else self.cast(lhs, ret_sca_ty)
            rhs = self.scalar_constant(rhs_scalar, dtype=ret_sca_ty) if rhs_is_scalar else self.cast(rhs, ret_sca_ty)

        # implicit broadcasting
        lhs, rhs = self.broadcast_impl_value(lhs, rhs)
        return lhs, rhs

    def binary_op_sanitize_overflow_impl(self, lhs: TensorTy, rhs: TensorTy, binary_op: callable):
        if lhs.type.scalar.int_bitwidth >= 64 or not self.builder.options.sanitize_overflow:
            return
        lhs_sca_ty = lhs.type.scalar
        rhs_sca_ty = rhs.type.scalar
        assert lhs_sca_ty == rhs_sca_ty
        assert lhs_sca_ty.is_int()
        lhs = self.cast(lhs, tl.int64)
        rhs = self.cast(rhs, tl.int64)
        ret = binary_op(lhs, rhs, False)
        max_value = lhs_sca_ty.get_int_max_value()
        max_value = self.scalar_constant(max_value, tl.int64)
        min_value = lhs_sca_ty.get_int_min_value()
        min_value = self.scalar_constant(min_value, tl.int64)
        cond = self.and_(self.less_equal(ret, max_value), self.greater_equal(ret, min_value))
        msg = f"int{lhs_sca_ty.int_bitwidth} overflow detected for operation {binary_op.__name__}"
        self.device_assert(cond, msg)

    def add(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
            sanitize_overflow: bool) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other, True, True)
        input_scalar_ty = input.type.scalar
        other_scalar_ty = other.type.scalar
        if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr():
            raise TypeError("cannot add pointers together")

        # offset + ptr
        # ptr + offset
        if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr():
            input, other = other, input
            input_scalar_ty = input.type.scalar
            other_scalar_ty = other.type.scalar
        if input_scalar_ty.is_ptr():
            other_handle = other.handle
            if other.dtype.is_int_unsigned() and other.dtype.int_bitwidth < 64:
                # addptr treats offset as signed. Zero-extend unsigned offsets to ensure they're positive
                i64_ty = other.type.with_element_ty(tl.int64).to_ir(self.builder)
                other_handle = self.builder.create_int_cast(other.handle, i64_ty, False)
            return self.tensor(self.builder.create_addptr(input.handle, other_handle), input.type)
        # float + float
        elif input_scalar_ty.is_floating():
            return self.tensor(self.builder.create_fadd(input.handle, other.handle), input.type)
        # int + int
        elif input_scalar_ty.is_int():
            if sanitize_overflow:
                self.binary_op_sanitize_overflow_impl(input, other, self.add)
            return self.tensor(self.builder.create_add(input.handle, other.handle), input.type)
        raise TypeError(f"unexpected type {input_scalar_ty}")

    def sub(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
            sanitize_overflow: bool) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other, True, False)
        scalar_ty = input.type.scalar
        # ptr - offset
        if scalar_ty.is_ptr():
            return self.add(input, self.minus(other), sanitize_overflow=False)
        # float - float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fsub(input.handle, other.handle), input.type)
        # int - int
        elif scalar_ty.is_int():
            if sanitize_overflow:
                self.binary_op_sanitize_overflow_impl(input, other, self.sub)
            return self.tensor(self.builder.create_sub(input.handle, other.handle), input.type)
        raise TypeError(f"unexpected type {scalar_ty}")

    def mul(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
            sanitize_overflow: bool) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float * float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fmul(input.handle, other.handle), input.type)
        # int * int
        elif scalar_ty.is_int():
            if sanitize_overflow:
                self.binary_op_sanitize_overflow_impl(input, other, self.mul)
            return self.tensor(self.builder.create_mul(input.handle, other.handle), input.type)
        raise TypeError(f"unexpected type {scalar_ty}")

    def truediv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
        input_scalar_ty = input.type.scalar
        other_scalar_ty = other.type.scalar
        # float / int
        if input_scalar_ty.is_floating() and other_scalar_ty.is_int():
            other = self.cast(other, input_scalar_ty)
        # int / float
        elif input_scalar_ty.is_int() and other_scalar_ty.is_floating():
            input = self.cast(input, other_scalar_ty)
        # int / int (cast to tl.float32)
        elif input_scalar_ty.is_int() and other_scalar_ty.is_int():
            input = self.cast(input, tl.float32)
            other = self.cast(other, tl.float32)
        # float / float (cast to the highest exponent type)
        elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating():
            if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width:
                other = self.cast(other, input_scalar_ty)
            else:
                input = self.cast(input, other_scalar_ty)
        # unreachable
        else:
            raise TypeError(f"unexpected type {input_scalar_ty}")
        return self.tensor(self.builder.create_fdiv(input.handle, other.handle), input.type)

    def floordiv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
        input_scalar_ty = input.type.scalar
        other_scalar_ty = other.type.scalar
        if input_scalar_ty.is_int() and other_scalar_ty.is_int():
            ret_ty = self.integer_promote_impl(input_scalar_ty, other_scalar_ty)
            input = self.cast(input, ret_ty)
            other = self.cast(other, ret_ty)
            if ret_ty.is_int_signed():
                return self.tensor(self.builder.create_sdiv(input.handle, other.handle), input.type)
            else:
                return self.tensor(self.builder.create_udiv(input.handle, other.handle), input.type)
        raise TypeError(f"unexpected type {input_scalar_ty}")

    def fdiv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number, ieee_rounding: bool) -> TensorTy:
        input_scalar_ty = input.type.scalar
        other_scalar_ty = other.type.scalar
        if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating():
            raise TypeError("both operands of fdiv must have floating scalar type")
        input, other = self.binary_op_type_checking_impl(input, other, False, False, False, True)
        ret = self.builder.create_fdiv(input.handle, other.handle)
        return self.tensor(ret, input.type)

    def mod(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
        scalar_ty = input.type.scalar
        other_scalar_ty = other.type.scalar
        # float % float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_frem(input.handle, other.handle), input.type)
        # % int
        elif scalar_ty.is_int():
            if scalar_ty.int_signedness != other_scalar_ty.int_signedness:
                raise TypeError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " "
                                "because they have different signedness;"
                                "this is unlikely to result in a useful answer. Cast them to the same signedness.")
            if scalar_ty.is_int_signed():
                return self.tensor(self.builder.create_srem(input.handle, other.handle), input.type)
            else:
                return self.tensor(self.builder.create_urem(input.handle, other.handle), input.type)
        raise TypeError(f"unexpected type {scalar_ty}")

##############
# other arithmetic ops
##############

    def minimum(self, x: TensorTy, y: TensorTy, propagate_nan: tl.PropagateNan):
        x, y = self.binary_op_type_checking_impl(x, y)
        dtype = x.dtype
        if dtype.is_floating():
            if propagate_nan == tl.PropagateNan.ALL:
                return self.tensor(self.builder.create_minimumf(x.handle, y.handle), x.type)
            elif propagate_nan == tl.PropagateNan.NONE:
                return self.tensor(self.builder.create_minnumf(x.handle, y.handle), x.type)
            else:
                raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
        elif dtype.is_int_signed():
            return self.tensor(self.builder.create_minsi(x.handle, y.handle), x.type)
        elif dtype.is_int_unsigned():
            return self.tensor(self.builder.create_minui(x.handle, y.handle), x.type)
        else:
            raise TypeError(f"Unexpected dtype {dtype}")

    def maximum(self, x: TensorTy, y: TensorTy, propagate_nan: tl.PropagateNan):
        x, y = self.binary_op_type_checking_impl(x, y)
        dtype = x.dtype
        if dtype.is_floating():
            if propagate_nan == tl.PropagateNan.ALL:
                return self.tensor(self.builder.create_maximumf(x.handle, y.handle), x.type)
            elif propagate_nan == tl.PropagateNan.NONE:
                return self.tensor(self.builder.create_maxnumf(x.handle, y.handle), x.type)
            else:
                raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
        elif dtype.is_int_signed():
            return self.tensor(self.builder.create_maxsi(x.handle, y.handle), x.type)
        elif dtype.is_int_unsigned():
            return self.tensor(self.builder.create_maxui(x.handle, y.handle), x.type)
        else:
            raise TypeError(f"Unexpected dtype {dtype}")

    def clamp(self, x: TensorTy, min: TensorTy, max: TensorTy, propagate_nan: tl.PropagateNan):
        min, max = self.binary_op_type_checking_impl(min, max)
        x, min = self.binary_op_type_checking_impl(x, min)
        x, max = self.binary_op_type_checking_impl(x, max)

        dtype = x.dtype
        if dtype.is_floating():
            return self.tensor(self.builder.create_clampf(x.handle, min.handle, max.handle, propagate_nan), x.type)
        else:
            raise TypeError(f"Unexpected dtype {dtype}. Only floating point clamp is supported")

##############
# bitwise ops
##############

    def bitwise_op_type_checking_impl(self, input: TensorTy, other: TensorTy) -> Tuple[TensorTy, TensorTy]:
        input, other = self.binary_op_type_checking_impl(input, other)
        input_sca_ty = input.type.scalar
        other_sca_ty = other.type.scalar
        if not input_sca_ty.is_int() or not other_sca_ty.is_int():
            raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty)
        ret_sca_ty = self.integer_promote_impl(input_sca_ty, other_sca_ty)
        if ret_sca_ty != input_sca_ty:
            input = self.cast(input, ret_sca_ty)
        if ret_sca_ty != other_sca_ty:
            other = self.cast(other, ret_sca_ty)
        return input, other

    def and_(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_and(input.handle, other.handle), input.type)

    def or_(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_or(input.handle, other.handle), input.type)

    def xor_(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_xor(input.handle, other.handle), input.type)

    def logical_and(self, input: TensorTy, other: TensorTy) -> TensorTy:
        if not input.type.is_int1():
            input = self.bitcast(input, tl.int1)
        if not other.type.is_int1():
            other = self.bitcast(other, tl.int1)
        return self.and_(input, other)

    def logical_or(self, input: TensorTy, other: TensorTy) -> TensorTy:
        if not input.type.is_int1():
            input = self.bitcast(input, tl.int1)
        if not other.type.is_int1():
            other = self.bitcast(other, tl.int1)
        return self.or_(input, other)

    def not_(self, input: TensorTy):
        if not input.type.is_int1():
            input = self.bitcast(input, tl.int1)
        return self.invert(input)

    def lshr(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_lshr(input.handle, other.handle), input.type)

    def ashr(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_ashr(input.handle, other.handle), input.type)

    def shl(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.bitwise_op_type_checking_impl(input, other)
        return self.tensor(self.builder.create_shl(input.handle, other.handle), input.type)

# ===----------------------------------------------------------------------===//
#                               Unary Operators
# ===----------------------------------------------------------------------===//

    def plus(self, input: TensorTy) -> TensorTy:
        return input

    def minus(self, input: TensorTy) -> TensorTy:
        input_sca_ty = input.type.scalar
        if input_sca_ty.is_ptr():
            raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")")
        _0 = self.tensor(self.builder.get_null_value(input_sca_ty.to_ir(self.builder)), input_sca_ty)
        return self.sub(_0, input, True)

    def invert(self, input: TensorTy) -> TensorTy:
        input_sca_ty = input.type.scalar
        if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
            raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
        _1 = self.tensor(self.builder.get_all_ones_value(input_sca_ty.to_ir(self.builder)), input_sca_ty)
        return self.xor_(input, _1)

# ===----------------------------------------------------------------------===//
#                               Comparison Operators
# ===----------------------------------------------------------------------===//

    def _bool_like(self, v: TensorTy) -> tl.block_type:
        return v.type.with_element_ty(tl.int1)

    def greater_than(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float > float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpOGT(input.handle, other.handle), self._bool_like(input))
        # > int
        elif scalar_ty.is_int():
            if scalar_ty.is_int_signed():
                return self.tensor(self.builder.create_icmpSGT(input.handle, other.handle), self._bool_like(input))
            else:
                return self.tensor(self.builder.create_icmpUGT(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

    def greater_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float >= float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpOGE(input.handle, other.handle), self._bool_like(input))
        # >= int
        elif scalar_ty.is_int():
            if scalar_ty.is_int_signed():
                return self.tensor(self.builder.create_icmpSGE(input.handle, other.handle), self._bool_like(input))
            else:
                return self.tensor(self.builder.create_icmpUGE(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

    def less_than(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float < float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpOLT(input.handle, other.handle), self._bool_like(input))
        # < int
        elif scalar_ty.is_int():
            if scalar_ty.is_int_signed():
                return self.tensor(self.builder.create_icmpSLT(input.handle, other.handle), self._bool_like(input))
            else:
                return self.tensor(self.builder.create_icmpULT(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

    def less_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float < float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpOLE(input.handle, other.handle), self._bool_like(input))
        # < int
        elif scalar_ty.is_int():
            if scalar_ty.is_int_signed():
                return self.tensor(self.builder.create_icmpSLE(input.handle, other.handle), self._bool_like(input))
            else:
                return self.tensor(self.builder.create_icmpULE(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

    def equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float == float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpOEQ(input.handle, other.handle), self._bool_like(input))
        # == int
        elif scalar_ty.is_int():
            return self.tensor(self.builder.create_icmpEQ(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

    def not_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
        input, other = self.binary_op_type_checking_impl(input, other)
        scalar_ty = input.type.scalar
        # float == float
        if scalar_ty.is_floating():
            return self.tensor(self.builder.create_fcmpUNE(input.handle, other.handle), self._bool_like(input))
        # == int
        elif scalar_ty.is_int():
            return self.tensor(self.builder.create_icmpNE(input.handle, other.handle), self._bool_like(input))
        raise TypeError(f"unexpected type {scalar_ty}")

# ===----------------------------------------------------------------------===//
#                               Block Creation
# ===----------------------------------------------------------------------===//

    def arange(self, start: int, end: int, *, ret_ty: tl.block_type = None) -> TensorTy:
        if not isinstance(start, int) or not isinstance(end, int):
            raise ValueError("arange's arguments must be of type tl.constexpr")
        is_start_int64 = bool(start >> 32)
        is_end_int64 = bool(end >> 32)
        if is_start_int64 or is_end_int64:
            raise ValueError("arange must fit in int32")
        if end <= start:
            raise ValueError("arange's end argument must be greater than the start argument")
        range = end - start
        if (range & (range - 1)) != 0:
            raise ValueError("arange's range must be a power of 2")
        shape = [range]
        if ret_ty is None:
            ret_ty = tl.block_type(tl.int32, shape)
        ret_ty_ir = ret_ty.to_ir(self.builder)
        return self.tensor(self.builder.create_make_range(ret_ty_ir, start, end), ret_ty)

    def scalar_constant(self, value, dtype: tl.dtype) -> TensorTy:
        # scalar
        if dtype is None:
            raise ValueError("dtype must be specified when value is not a tensor")
        if value == 0:
            value = self.builder.get_null_value(dtype.to_ir(self.builder))
        else:
            get_value_fn = getattr(self.builder, f"get_{dtype.name}")
            value = get_value_fn(value)
        return self.tensor(value, dtype)

    def make_scalar(self, value, dtype: tl.dtype) -> TensorTy:
        if isinstance(value, tl.tensor):
            assert value.numel.value == 1, "only accepts size-1 tensor"
            return self.cast(value, dtype)
        # scalar
        return self.scalar_constant(value, dtype)

    def full(self, shape: List[int], value, dtype: tl.dtype) -> TensorTy:
        return self.splat(self.make_scalar(value, dtype), shape)

# ===----------------------------------------------------------------------===//
#                               Shape Manipulation
# ===----------------------------------------------------------------------===//

    def splat(self, value: TensorTy, shape: List[int]) -> TensorTy:
        assert not value.type.is_block(), "Cannot splat a block tensor"
        if len(shape) == 0:
            return value
        ret_ty = tl.block_type(value.dtype, shape)
        return self.tensor(self.builder.create_splat(ret_ty.to_ir(self.builder), value.handle), ret_ty)

    def reshape(self, input: TensorTy, dst_shape: List[int], can_reorder: bool) -> TensorTy:
        numel = 1
        for s in dst_shape:
            numel *= s
        if input.type.numel != numel:
            raise ValueError("reshape() cannot change total number of elements in tensor")
        ret_ty = tl.block_type(input.type.scalar, dst_shape)
        return self.tensor(self.builder.create_reshape(input.handle, dst_shape, can_reorder), ret_ty)

    def expand_dims(self, input: TensorTy, axis: int) -> TensorTy:
        dst_shape = [tl._unwrap_if_constexpr(x) for x in input.shape]
        dst_shape.insert(axis, 1)

        if not input.type.is_block():
            return self.splat(input, shape=dst_shape)

        ret_ty = tl.block_type(input.type.scalar, dst_shape)
        return self.tensor(self.builder.create_expand_dims(input.handle, axis), ret_ty)

    def cat(self, lhs: TensorTy, rhs: TensorTy, can_reorder: bool) -> TensorTy:
        assert can_reorder, "current implementation of `cat` always may reorder elements"
        assert len(lhs.shape) == 1
        ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]])
        return self.tensor(self.builder.create_cat(lhs.handle, rhs.handle), ret_type)

    def join(self, a: TensorTy, b: TensorTy) -> TensorTy:
        a, b = self.broadcast_impl_value(a, b)

        # The IR can't handle joining two scalars, so upcast them to 1D tensors,
        # then downcast the result.
        was_rank_1 = a.shape == []
        if was_rank_1:
            a = self.expand_dims(a, 0)
            b = self.expand_dims(b, 0)

        if isinstance(a.shape[-1], tl.constexpr):
            two = tl.constexpr(2)
        else:
            two = 2
        new_shape = a.shape + [two]

        ret_type = tl.block_type(a.type.scalar, new_shape)
        ret = self.tensor(self.builder.create_join(a.handle, b.handle), ret_type)

        if was_rank_1:
            ret = self.reshape(ret, [2], can_reorder=False)

        return ret

    def split(self, a: TensorTy) -> Tuple[TensorTy, TensorTy]:
        assert (len(a.shape) > 0)
        assert (tl._unwrap_if_constexpr(a.shape[-1]) == 2)

        new_shape = a.shape[:-1]
        ret_type = tl.block_type(a.type.scalar, new_shape)
        outLHS, outRHS = self.builder.create_split(a.handle)
        return (
            self.tensor(outLHS, ret_type),
            self.tensor(outRHS, ret_type),
        )

    def permute(self, input: TensorTy, dims: Tuple[int]) -> TensorTy:
        if len(input.shape) != len(dims):
            raise ValueError("permute dims must have the same length as input shape")
        if sorted(tl._unwrap_if_constexpr(d) for d in dims) != list(range(len(dims))):
            raise ValueError(f"permute dims must be a permutation of 0, 1, ..., n-1, but were {dims}")

        ret_type = tl.block_type(input.type.scalar, [input.shape[d] for d in dims])
        return self.tensor(self.builder.create_trans(input.handle, dims), ret_type)

    def broadcast_impl_shape(self, input: TensorTy, shape: Tuple[int]) -> TensorTy:
        if not input.type.is_block():
            return self.splat(input, shape)
        src_shape = input.type.get_block_shapes()
        if len(src_shape) != len(shape):
            raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}")
        if shape == src_shape:
            return input
        for i, item in enumerate(src_shape):
            if shape[i] != item and item != 1:
                raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
                                 f" must match the existing size ({item}) at non-singleton dimension"
                                 f" {i}: {src_shape}, {shape}")
        ret_ty = tl.block_type(input.type.scalar, shape)
        return self.tensor(self.builder.create_broadcast(input.handle, shape), ret_ty)

    def broadcast_impl_value(self, lhs: TensorTy, rhs: TensorTy) -> TensorTy:
        lhs_ty = lhs.type
        rhs_ty = rhs.type

        # make_shape_compatible(block, scalar)
        if lhs_ty.is_block() and not rhs_ty.is_block():
            rhs_ty = lhs_ty.with_element_ty(rhs_ty.scalar)
            rhs = self.tensor(self.builder.create_splat(rhs_ty.to_ir(self.builder), rhs.handle), rhs_ty)
        # make_shape_compatible(scalar, block)
        elif not lhs_ty.is_block() and rhs_ty.is_block():
            lhs_ty = rhs_ty.with_element_ty(lhs_ty.scalar)
            lhs = self.tensor(self.builder.create_splat(lhs_ty.to_ir(self.builder), lhs.handle), lhs_ty)
        # make_shape_compatible(block, block)
        elif lhs_ty.is_block() and rhs_ty.is_block():
            lhs_shape = lhs_ty.get_block_shapes()
            rhs_shape = rhs_ty.get_block_shapes()

            if len(lhs_shape) < len(rhs_shape):
                # Add new axes to lhs
                for _ in range(len(lhs_shape), len(rhs_shape)):
                    lhs = self.tensor(self.builder.create_expand_dims(lhs.handle, 0),
                                      tl.block_type(lhs_ty.scalar, [1] + lhs_shape.values))
                    lhs_ty = lhs.type
                    lhs_shape = lhs_ty.get_block_shapes()
            elif len(rhs_shape) < len(lhs_shape):
                # Add new axes to rhs
                for _ in range(len(rhs_shape), len(lhs_shape)):
                    rhs = self.tensor(self.builder.create_expand_dims(rhs.handle, 0),
                                      tl.block_type(rhs_ty.scalar, [1] + rhs_shape.values))
                    rhs_ty = rhs.type
                    rhs_shape = rhs_ty.get_block_shapes()
            assert len(rhs_shape) == len(lhs_shape)

            ret_shape = []
            for i, left in enumerate(lhs_shape):
                right = rhs_shape[i]
                if left == 1:
                    ret_shape.append(right)
                elif (right == 1) or (right == left):
                    ret_shape.append(left)
                else:
                    raise ValueError("Cannot make_shape_compatible: incompatible dimensions "
                                     "at index " + str(i) + ": " + str(left) + " and " + str(right))
            if lhs_shape != ret_shape:
                ret_ty = tl.block_type(lhs_ty.scalar, ret_shape)
                lhs = self.tensor(self.builder.create_broadcast(lhs.handle, ret_shape), ret_ty)
            if rhs_shape != ret_shape:
                ret_ty = tl.block_type(rhs_ty.scalar, ret_shape)
                rhs = self.tensor(self.builder.create_broadcast(rhs.handle, ret_shape), ret_ty)
        # (scalar, scalar) => returns original blocks
        return lhs, rhs

#######
# cast
#######

    def _str_to_rounding_mode(self, rounding_mode: Optional[str]):
        if rounding_mode is None:
            return None
        if rounding_mode == 'rtne':
            return ir.ROUNDING_MODE.RTNE
        if rounding_mode == 'rtz':
            return ir.ROUNDING_MODE.RTZ
        raise ValueError(f"Invalid rounding mode: {rounding_mode}. Supported rounding modes are 'rtne' and 'rtz'.")

    def bitcast(self, input: TensorTy, dst_ty: tl.dtype) -> TensorTy:
        src_ty = input.type
        if src_ty.is_block():
            dst_ty = src_ty.with_element_ty(dst_ty.scalar)
        if src_ty == dst_ty:
            return input
        src_sca_ty = src_ty.scalar
        dst_sca_ty = dst_ty.scalar
        if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr():
            return self.cast(input, dst_ty)
        # Bitcast
        src_bits = src_sca_ty.primitive_bitwidth
        dst_bits = dst_sca_ty.primitive_bitwidth
        if src_bits != dst_bits:
            raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to "
                             "data-type of size " + str(dst_bits))
        return self.tensor(self.builder.create_bitcast(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

    def cast(self, input: TensorTy, dst_ty: tl.dtype, fp_downcast_rounding: Optional[str] = None) -> TensorTy:
        src_ty = input.type
        src_sca_ty = src_ty.scalar
        dst_sca_ty = dst_ty.scalar
        if src_sca_ty == dst_sca_ty:
            return input
        if src_ty.is_block():
            dst_ty = src_ty.with_element_ty(dst_sca_ty)

        # For fp downcasting default rounding mode should be RTNE, for all other conversions it should
        # not be set
        fp_downcast_rounding = self._str_to_rounding_mode(fp_downcast_rounding)
        use_custom_rounding = False
        if dst_sca_ty.is_floating() and src_sca_ty.is_floating(
        ) and dst_sca_ty.primitive_bitwidth < src_sca_ty.primitive_bitwidth:
            if fp_downcast_rounding is None: fp_downcast_rounding = ir.ROUNDING_MODE.RTNE
            elif fp_downcast_rounding != ir.ROUNDING_MODE.RTNE: use_custom_rounding = True
        else:
            if fp_downcast_rounding is not None:
                raise ValueError("fp_downcast_rounding should be set only for truncating fp conversions. "
                                 "Source scalar type is " + str(src_sca_ty) + " and destination type is " +
                                 str(dst_sca_ty))

        if (src_sca_ty.is_fp8e4b15() or dst_sca_ty.is_fp8e4b15()):
            assert self.builder.codegen_fns.get(
                "convert_custom_types") is not None, "target doesn't provide conversion for this type."
            return self.builder.codegen_fns["convert_custom_types"](input, dst_ty, fp_downcast_rounding, _semantic=self)
        # Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64
        # and non-default rounding modes for downcasting
        if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \
           (src_sca_ty.is_floating() and dst_sca_ty.is_fp8()) or \
           use_custom_rounding:
            return self.tensor(
                self.builder.create_fp_to_fp(input.handle, dst_ty.to_ir(self.builder), fp_downcast_rounding), dst_ty)

        # bf16 <=> (not fp32)
        if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \
           (src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()):
            return self.cast(self.cast(input, tl.float32), dst_sca_ty)

        # Standard floating types' casting: truncation
        #   fp64 => fp32, fp16, bf16
        #   fp32 => fp16, bf16
        truncate_fp = src_sca_ty.is_floating() and \
            dst_sca_ty.is_floating() and \
            src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth
        if truncate_fp:
            return self.tensor(self.builder.create_fp_trunc(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        # Standard floating types' casting: extension
        #   fp32 => fp64
        #   fp16 => fp32, fp64
        #   bf16 => fp32, fp64
        ext_fp = src_sca_ty.is_floating() and \
            dst_sca_ty.is_floating() and \
            src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth
        if ext_fp:
            return self.tensor(self.builder.create_fp_ext(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        # Casting between integer types
        if src_sca_ty.is_int() and dst_sca_ty.is_int() and \
           (src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness):
            sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool()
            if dst_sca_ty.is_bool():
                ty = input.dtype.to_ir(self.builder)
                _0 = self.tensor(self.builder.get_null_value(ty), input.dtype)
                return self.not_equal(input, _0)
            else:
                return self.tensor(self.builder.create_int_cast(input.handle, dst_ty.to_ir(self.builder), sign_extend),
                                   dst_ty)

        # Casting standard floating types to integer types
        if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int():
            if dst_sca_ty.is_bool():
                ty = input.dtype.to_ir(self.builder)
                _0 = self.tensor(self.builder.get_null_value(ty), input.dtype)
                return self.not_equal(input, _0)
            elif dst_sca_ty.is_int_signed():
                return self.tensor(self.builder.create_fp_to_si(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
            else:
                return self.tensor(self.builder.create_fp_to_ui(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        # Casting integer types to standard floating types
        if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating():
            if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed():
                return self.tensor(self.builder.create_ui_to_fp(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
            else:
                return self.tensor(self.builder.create_si_to_fp(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        # Casting pointer types to integer types
        if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
            bitwidth = dst_sca_ty.int_bitwidth
            if bitwidth == 64:
                return self.tensor(self.builder.create_ptr_to_int(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
            if bitwidth == 1:
                return self.not_equal(self.cast(input, tl.int64), self.tensor(self.builder.get_int64(0), tl.int64))

        # Casting integer types to pointer types
        if src_sca_ty.is_int() and dst_sca_ty.is_ptr():
            return self.tensor(self.builder.create_int_to_ptr(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        # Casting pointer types to pointer types
        if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr():
            return self.tensor(self.builder.create_bitcast(input.handle, dst_ty.to_ir(self.builder)), dst_ty)

        assert False, f'cannot cast {input} to {dst_ty}'

# ===----------------------------------------------------------------------===//
#                               Memory Operators
# ===----------------------------------------------------------------------===//

    def _str_to_load_cache_modifier(self, cache_modifier):
        cache = ir.CACHE_MODIFIER.NONE  # default
        if cache_modifier:
            if cache_modifier == ".ca":
                cache = ir.CACHE_MODIFIER.CA
            elif cache_modifier == ".cg":
                cache = ir.CACHE_MODIFIER.CG
            elif cache_modifier == ".cv":
                cache = ir.CACHE_MODIFIER.CV
            else:
                raise ValueError(f"Cache modifier {cache_modifier} not supported")
        return cache

    def _str_to_store_cache_modifier(self, cache_modifier):
        cache = ir.CACHE_MODIFIER.NONE  # default
        if cache_modifier:
            if cache_modifier == ".wb":
                cache = ir.CACHE_MODIFIER.WB
            elif cache_modifier == ".cg":
                cache = ir.CACHE_MODIFIER.CG
            elif cache_modifier == ".cs":
                cache = ir.CACHE_MODIFIER.CS
            elif cache_modifier == ".wt":
                cache = ir.CACHE_MODIFIER.WT
            else:
                raise ValueError(f"Cache modifier {cache_modifier} not supported")
        return cache

    def _str_to_eviction_policy(self, eviction_policy):
        eviction = ir.EVICTION_POLICY.NORMAL  # default
        if eviction_policy:
            if eviction_policy == "evict_last":
                eviction = ir.EVICTION_POLICY.EVICT_LAST
            elif eviction_policy == "evict_first":
                eviction = ir.EVICTION_POLICY.EVICT_FIRST
            else:
                raise ValueError(f"Eviction policy {eviction_policy} not supported")
        return eviction

    def _str_to_padding_option(self, padding_option):
        padding = None  # default
        if padding_option:
            if padding_option == "zero":
                padding = ir.PADDING_OPTION.PAD_ZERO
            elif padding_option == "nan":
                padding = ir.PADDING_OPTION.PAD_NAN
            else:
                raise ValueError(f"Padding option {padding_option} not supported")
        return padding

    def _str_to_sem(self, sem_option):
        sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
        if sem_option:
            if sem_option == "acquire":
                sem = ir.MEM_SEMANTIC.ACQUIRE
            elif sem_option == "release":
                sem = ir.MEM_SEMANTIC.RELEASE
            elif sem_option == "acq_rel":
                sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
            elif sem_option == "relaxed":
                sem = ir.MEM_SEMANTIC.RELAXED
            else:
                raise ValueError(f"Memory semantic {sem_option} not supported")
        return sem

    def _str_to_scope(self, scope_option):
        scope = ir.MEM_SYNC_SCOPE.GPU
        if scope_option:
            if scope_option == "gpu":
                scope = ir.MEM_SYNC_SCOPE.GPU
            elif scope_option == "cta":
                scope = ir.MEM_SYNC_SCOPE.CTA
            elif scope_option == "sys":
                scope = ir.MEM_SYNC_SCOPE.SYSTEM
            else:
                raise ValueError(f"Memory semantic {scope_option} not supported")
        return scope

    def _canonicalize_boundary_check(self, boundary_check, block_shape):
        if boundary_check:
            if not hasattr(boundary_check, "__iter__"):
                boundary_check = [boundary_check]
            boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check]
            for dim in boundary_check:
                assert isinstance(dim, int) and 0 <= dim < len(block_shape)
            assert len(boundary_check) > 0
            assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`"
            return sorted(boundary_check)
        return ()

    def _load_block_pointer(self, ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile):
        # Load by a block pointer: `pointer_type<block_type<>>`
        # Block pointer can not have `mask` and `other` arguments
        if mask is not None or other is not None:
            raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")

        elt_ty = ptr.type.element_ty.element_ty
        assert elt_ty != tl.int1, "`tl.int1` should be rewritten in `tl.make_block_ptr`"
        if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
            raise ValueError("Padding option `nan` is not supported for integer block pointers")

        # `dst_ty` is de-referenced type of the pointer type
        dst_ty = ptr.type.element_ty

        # Check `boundary_check` argument
        boundary_check = self._canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes())

        # Build IR
        return self.tensor(
            self.builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile),
            dst_ty)

    def _load_legacy(self, ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile):
        # Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
        if not ptr.type.scalar.is_ptr():
            raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`")

        # Check `mask`, `other`, `boundary_check`, and `padding` arguments
        if mask is None and other is not None:
            raise ValueError("`other` cannot be provided without `mask`")
        if padding or boundary_check:
            raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of"
                             "pointers or loading a scalar. Because the compiler does not know the boundary; please "
                             "use block pointers (defined by `make_block_ptr`) instead")

        # For a pointer of scalar, check the type of `mask` and `other`
        if not ptr.type.is_block():
            if mask and mask.type.is_block():
                raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
            if other and other.type.is_block():
                raise ValueError("Other argument cannot be block type if pointer argument is not a block")

        # Make `mask` and `other` into the same shape as `ptr`
        if ptr.type.is_block():
            if mask is not None:
                mask = self.broadcast_impl_shape(mask, ptr.type.get_block_shapes())
            if other is not None:
                other = self.broadcast_impl_shape(other, ptr.type.get_block_shapes())

        # Get `pointer_type<elt_ty>` and `elt_ty`
        ptr_ty = ptr.type.scalar
        elt_ty = ptr_ty.element_ty

        # Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
        is_bool = elt_ty == tl.int1
        if is_bool:
            elt_ty = tl.int8
            ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
            ptr = self.cast(ptr, ptr_ty)

        # Cast `other` into `elt_ty` type
        if other is not None:
            other = self.cast(other, elt_ty)

        # Create loaded result type `dst_ty`
        if ptr.type.is_block():
            dst_ty = ptr.type.with_element_ty(elt_ty)
        else:
            # Load by de-referencing the pointer of scalar
            dst_ty = elt_ty

        # Build IR
        if mask is None:
            ret = self.tensor(self.builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty)
        else:
            ret = self.tensor(
                self.builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache,
                                                eviction, is_volatile), dst_ty)
        if is_bool:
            ret = self.cast(ret, tl.int1)
        return ret

    def load(self, ptr: TensorTy, mask: Optional[TensorTy], other: Optional[TensorTy], boundary_check: Tuple,
             padding_option: str, cache_modifier: str, eviction_policy: str, is_volatile: bool) -> TensorTy:
        # Cache, eviction and padding options
        cache = self._str_to_load_cache_modifier(cache_modifier)
        eviction = self._str_to_eviction_policy(eviction_policy)
        padding = self._str_to_padding_option(padding_option)

        if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
            # Load by a block pointer: `pointer_type<block_type<>>`
            return self._load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile)
        else:
            # Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
            return self._load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile)

    def descriptor_load(self, desc: tl.tensor_descriptor_base, offsets, cache_modifier: str,
                        eviction_policy: str) -> TensorTy:
        assert isinstance(desc, tl.tensor_descriptor_base)
        ndim = len(desc.block_shape)
        assert len(offsets) == ndim, f"expected {ndim} offsets, but got {len(offsets)}"

        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        x = self.builder.create_descriptor_load(desc.handle, offsets, self._str_to_load_cache_modifier(cache_modifier),
                                                self._str_to_eviction_policy(eviction_policy))
        return self.tensor(x, desc.block_type)

    def validate_store_like(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> None:
        assert isinstance(desc, tl.tensor_descriptor_base)
        ndim = len(desc.block_shape)
        assert len(offsets) == ndim, f"expected {ndim} offsets, but got {len(offsets)}"
        assert value.shape == desc.block_shape

    def descriptor_store(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        return self.tensor(self.builder.create_descriptor_store(desc.handle, value.handle, offsets), tl.void)

    def descriptor_atomic_add(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.float32, tl.float16, tl.bfloat16}, "Unsupported dtype"
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.ADD
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def _has_native_tma(self, ):
        target = driver.active.get_current_target()
        return (target.backend == "cuda" and target.arch >= 90)

    def _descriptor_atomic_min_max_supported(self, dtype):
        assert dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64, tl.float16, tl.bfloat16}, "Unsupported dtype"
        if dtype in {tl.float16, tl.bfloat16}:
            assert self._has_native_tma(), "16-bit float types require native tma support"

    def descriptor_atomic_min(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        self._descriptor_atomic_min_max_supported(desc.dtype)
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.MIN
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def descriptor_atomic_max(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        self._descriptor_atomic_min_max_supported(desc.dtype)
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.MAX
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def descriptor_atomic_and(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.AND
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def descriptor_atomic_or(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.OR
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def descriptor_atomic_xor(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
        self.validate_store_like(desc, value, offsets)
        assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
        offsets = self._convert_to_ir_values(offsets, require_i64=False)
        kind = ir.DESCRIPTOR_REDUCE_KIND.XOR
        return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)

    def descriptor_gather(self, desc, x_offsets, y_offset, cache_modifier: str, eviction_policy: str) -> TensorTy:
        assert isinstance(desc, tl.tensor_descriptor_base)
        assert cache_modifier == "", "cache modifier is not supported yet"
        assert eviction_policy == "", "eviction policy is not supported yet"

        # Validate descriptor.
        assert len(desc.block_shape) == 2, f"descriptor must be 2D, but got {desc.block_shape}"
        assert desc.block_shape[0] == 1, f"descriptor block must have 1 row, but got {desc.block_shape}"

        # Validate offsets.
        assert len(x_offsets.shape) == 1, f"x offsets must be 1D, but got {x_offsets.shape}"

        # Validate minimum block size.
        assert x_offsets.shape[0] >= 8, f"descriptor gather must have at least 8 rows, but got {x_offsets.shape}"
        dtype = desc.dtype
        min_cols = 32 // dtype.primitive_bitwidth * 8
        assert desc.block_shape[
            1] >= min_cols, f"descriptor gather of {dtype} must have at least {min_cols} columns, but got {desc.block_shape[1]}"

        type = tl.block_type(desc.dtype, [x_offsets.shape[0], desc.block_shape[1]])
        y_offset = self._convert_to_ir_values((y_offset, ), require_i64=False)[0]
        x = self.builder.create_descriptor_gather(desc.handle, x_offsets.handle, y_offset, type.to_ir(self.builder))
        return self.tensor(x, type)

    def descriptor_scatter(self, desc, value: TensorTy, x_offsets, y_offset) -> TensorTy:
        assert isinstance(desc, tl.tensor_descriptor_base)

        # Validate descriptor.
        assert len(desc.block_shape) == 2, f"descriptor must be 2D, but got {desc.block_shape}"
        assert desc.block_shape[0] == 1, f"descriptor block must have 1 row, but got {desc.block_shape}"

        # Validate offsets.
        assert len(x_offsets.shape) == 1, f"x offsets must be 1D, but got {x_offsets.shapae}"

        # Validate minimum block size.
        assert x_offsets.shape[0] >= 8, f"descriptor scatter must have at least 8 rows, but got {x_offsets.shape}"
        dtype = desc.dtype
        min_cols = 32 // dtype.primitive_bitwidth * 8
        assert desc.block_shape[
            1] >= min_cols, f"descriptor scatter of {dtype} must have at least {min_cols} columns, but got {desc.block_shape[1]}"

        y_offset = self._convert_to_ir_values((y_offset, ), require_i64=False)[0]
        self.builder.create_descriptor_scatter(desc.handle, value.handle, x_offsets.handle, y_offset)
        return self.tensor(None, tl.void)

    def _store_block_pointer(self, ptr, val, mask, boundary_check, cache, eviction):
        # Store by a block pointer: `pointer_type<block_type<>>`
        # Block pointers can not have the `mask` argument
        if mask is not None:
            raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")

        # Check same shape and element type
        block_shape = ptr.type.element_ty.get_block_shapes()
        if not val.type.is_block():
            val = self.broadcast_impl_shape(val, block_shape)
        assert val.type.is_block(), "Value argument must be block type or a scalar"
        assert block_shape == val.type.get_block_shapes(
        ), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch"
        assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch"

        elt_ty = ptr.type.element_ty.element_ty
        assert elt_ty != tl.int1, "`tl.int1` should be rewritten in `tl.make_block_ptr`"

        # Check `boundary_check` argument
        boundary_check = self._canonicalize_boundary_check(boundary_check, block_shape)

        # Cast to target data type
        val = self.cast(val, elt_ty)

        # Build IR
        return self.tensor(
            self.builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction), tl.void)

    def _store_legacy(self, ptr, val, mask, boundary_check, cache, eviction):
        # Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
        if not ptr.type.scalar.is_ptr():
            raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`")

        # Check `boundary_check` argument
        if boundary_check:
            raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a "
                             "scalar. Because the compiler does not know the boundary; please use block pointers "
                             "(defined by `make_block_ptr`) instead")

        # For a pointer of scalar, check the type of `val` and `mask`
        if not ptr.type.is_block():
            if val.type.is_block():
                raise ValueError("Value argument cannot be block type if pointer argument is not a block")
            if mask and mask.type.is_block():
                raise ValueError("Mask argument cannot be block type if pointer argument is not a block")

        # Make `mask` and `val` into the same shape as `ptr`
        if ptr.type.is_block():
            val = self.broadcast_impl_shape(val, ptr.type.get_block_shapes())
            if mask is not None:
                mask = self.broadcast_impl_shape(mask, ptr.type.get_block_shapes())

        ptr_ty = ptr.type.scalar
        elt_ty = ptr_ty.element_ty

        # Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
        if elt_ty == tl.int1:
            elt_ty = tl.int8
            ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
            ptr = self.cast(ptr, ptr_ty)

        # Cast to target data type
        val = self.cast(val, elt_ty)

        # Build IR
        if mask is None:
            return self.tensor(self.builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void)
        if not mask.type.scalar.is_bool():
            raise ValueError("Mask must have boolean scalar type")
        return self.tensor(self.builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction),
                           tl.void)

    def store(self, ptr: TensorTy, val: TensorTy, mask: Optional[TensorTy], boundary_check, cache_modifier: str,
              eviction_policy: str) -> TensorTy:
        # Cache and eviction options
        cache = self._str_to_store_cache_modifier(cache_modifier)
        eviction = self._str_to_eviction_policy(eviction_policy)

        if ptr.type.is_const() or ptr.type.scalar.is_const():
            raise ValueError("Cannot store to a constant pointer")

        if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
            # Store by a block pointer: `pointer_type<block_type<>>`
            return self._store_block_pointer(ptr, val, mask, boundary_check, cache, eviction)
        else:
            # Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
            return self._store_legacy(ptr, val, mask, boundary_check, cache, eviction)

#########
# atomic
#########

    def atomic_cas(self, ptr: TensorTy, cmp: TensorTy, val: TensorTy, sem: str, scope: str) -> TensorTy:
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        element_ty = ptr.type.scalar.element_ty
        if element_ty.primitive_bitwidth not in [16, 32, 64]:
            raise ValueError("atomic_cas only supports elements with width {16, 32, 64}")
        return self.tensor(self.builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type)

    def atom_red_typechecking_impl(self, ptr: TensorTy, val: TensorTy, mask: TensorTy,
                                   op: str) -> Tuple[TensorTy, TensorTy, TensorTy]:
        if not ptr.type.scalar.is_ptr():
            raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__())
        if ptr.type.is_const() or ptr.type.element_ty.is_const():
            raise ValueError("Cannot store to a constant pointer")
        element_ty = ptr.type.scalar.element_ty
        if element_ty is tl.float16 and op != 'add':
            raise ValueError("atomic_" + op + " does not support fp16")
        if element_ty is tl.bfloat16 and op != 'add':
            raise ValueError("atomic_" + op + " does not support bf16")
        if element_ty in [tl.int16, tl.uint16] or element_ty.primitive_bitwidth < 16:
            raise ValueError("atomic_" + op + " does not support " + str(element_ty))
        if ptr.type.is_block():
            if mask is not None:
                mask = self.broadcast_impl_shape(mask, ptr.type.get_block_shapes())
            if val is not None:
                val = self.broadcast_impl_shape(val, ptr.type.get_block_shapes())
        val = self.cast(val, ptr.type.scalar.element_ty)
        if mask is None:
            mask_ir = self.builder.get_int1(True)
            mask_ty = tl.int1
            if ptr.type.is_block():
                mask_ty = ptr.type.with_element_ty(tl.int1)
                mask_ir = self.builder.create_splat(mask_ty.to_ir(self.builder), mask_ir)
            mask = self.tensor(mask_ir, mask_ty)
        return ptr, val, mask

    def _signbit(self, x: TensorTy) -> TensorTy:
        bitwidth = x.dtype.primitive_bitwidth
        idtype = tl.get_int_dtype(bitwidth=bitwidth, signed=False)
        ix = self.bitcast(x, idtype)
        signbit = self.lshr(ix, bitwidth - 1)
        return self.cast(signbit, tl.int1)

    def atomic_max(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'max')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        sca_ty = val.type.scalar
        # direct call to atomic_max for integers
        if sca_ty.is_int():
            if sca_ty.is_int_signed():
                return self.tensor(
                    self.builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope),
                    val.type)
            else:
                return self.tensor(
                    self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope),
                    val.type)
        # for float
        # return atomic_smax(i_ptr, i_val) if val >= 0
        # return atomic_umin(i_ptr, i_val) if val < 0
        if sca_ty not in {tl.float32, tl.float64}:
            raise TypeError(f"atomic_max not supported for dtype {sca_ty}")

        i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
        i_val = self.bitcast(val, i_type)
        i_ptr = self.bitcast(ptr, tl.pointer_type(i_type, 1))
        ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
        ui_val = self.bitcast(val, ui_type)
        ui_ptr = self.bitcast(ptr, tl.pointer_type(ui_type, 1))
        neg = self._signbit(val)
        pos = self.not_(neg)
        pos_ret = self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle,
                                           self.and_(mask, pos).handle, sem, scope), i_val.type)
        neg_ret = self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ui_ptr.handle, ui_val.handle,
                                           self.and_(mask, neg).handle, sem, scope), ui_val.type)
        ret = self.where(pos, pos_ret, neg_ret)
        return self.bitcast(ret, sca_ty)

    def atomic_min(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'min')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        sca_ty = val.type.scalar
        # direct call to atomic_min for integers
        if sca_ty.is_int():
            if sca_ty.is_int_signed():
                return self.tensor(
                    self.builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope),
                    val.type)
            else:
                return self.tensor(
                    self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope),
                    val.type)
        # for float
        # return atomic_smin(i_ptr, i_val) if val >= 0
        # return atomic_umax(i_ptr, i_val) if val < 0
        if sca_ty not in {tl.float32, tl.float64}:
            raise TypeError(f"atomic_min not supported for dtype {sca_ty}")

        i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
        i_val = self.bitcast(val, i_type)
        i_ptr = self.bitcast(ptr, tl.pointer_type(i_type, 1))
        ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
        ui_val = self.bitcast(val, ui_type)
        ui_ptr = self.bitcast(ptr, tl.pointer_type(ui_type, 1))
        neg = self._signbit(val)
        pos = self.not_(neg)
        pos_ret = self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle,
                                           self.and_(mask, pos).handle, sem, scope), i_val.type)
        neg_ret = self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ui_ptr.handle, ui_val.handle,
                                           self.and_(mask, neg).handle, sem, scope), ui_ptr.type)
        ret = self.where(pos, pos_ret, neg_ret)
        return self.bitcast(ret, sca_ty)

    def atomic_add(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'add')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        sca_ty = val.type.scalar
        op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD
        return self.tensor(self.builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope),
                           val.type)

    def atomic_and(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'and')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        return self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope), val.type)

    def atomic_or(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'or')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        return self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope), val.type)

    def atomic_xor(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'xor')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        return self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope), val.type)

    def atomic_xchg(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
        ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'xchg')
        sem = self._str_to_sem(sem)
        scope = self._str_to_scope(scope)
        return self.tensor(
            self.builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope),
            val.type)

# ===----------------------------------------------------------------------===//
#                               Linear Algebra
# ===----------------------------------------------------------------------===//

    def _str_to_dot_input_precision(self, input_precision):
        assert input_precision.lower() in self.builder.options.allowed_dot_input_precisions, \
            f"input_precision must be one of {self.builder.options.allowed_dot_input_precisions}. Got {input_precision}"
        input_precision = input_precision.upper()
        if input_precision == "TF32X3":
            input_precision = "TF32x3"
        return getattr(ir.INPUT_PRECISION, input_precision)

    def dot(self, lhs: TensorTy, rhs: TensorTy, acc: TensorTy, input_precision: Optional[str],
            max_num_imprecise_acc: int, out_dtype: tl.dtype) -> TensorTy:
        assert lhs.type.is_block() and rhs.type.is_block()

        if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
            # All combinations of supported fp8 x fp8 are permitted
            pass
        else:
            assert lhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16,
                                 tl.float32), f"Unsupported lhs dtype {lhs.dtype}"
            assert rhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16,
                                 tl.float32), f"Unsupported rhs dtype {rhs.dtype}"
            assert lhs.dtype == rhs.dtype, f"Both operands must be same dtype. Got {lhs.dtype} and {rhs.dtype}"

        if lhs.dtype.is_fp8e4b15() or rhs.dtype.is_fp8e4b15():
            if "fp8e4b15" in self.builder.options.deprecated_fp8_dot_operand_dtypes:
                warnings.warn(
                    "the use of fp8e4b15 is deprecated on Hopper and later architectures and can cause significant slow down. It will be removed in a future triton release"
                )
            # We upcast because there's no fp8e4b15 type in MLIR
            lhs = self.cast(lhs, tl.float16)
            rhs = self.cast(rhs, tl.float16)

        if input_precision is None:
            input_precision = self.builder.options.default_dot_input_precision

        input_precision = self._str_to_dot_input_precision(input_precision)

        lhs_rank = len(lhs.shape)
        rhs_rank = len(rhs.shape)
        assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
        assert lhs.shape[-1].value == rhs.shape[
            -2].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[-1].value}) must be equal to first index of second shape ({rhs.shape[-2].value})"
        assert self.builder.codegen_fns.get(
            "min_dot_size") is not None, "target doesn't provide lower shape bounds for dot."
        min_dot_size = self.builder.codegen_fns["min_dot_size"](lhs.type, rhs.type)
        assert lhs.shape[-2].value >= min_dot_size[0] and lhs.shape[-1].value >= min_dot_size[2] \
            and rhs.shape[-1].value >= min_dot_size[1], \
                f"Input shapes should have M >= {min_dot_size[0]}, N >= {min_dot_size[1]} and K >= {min_dot_size[2]}"
        if lhs.type.scalar.is_int():
            assert lhs.type.scalar == tl.int8, "only int8 supported!"
            _0 = self.builder.get_int32(0)
            ret_scalar_ty = tl.int32
        elif out_dtype.is_bf16():
            raise ValueError(
                "out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`"
            )
        elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16():
            _0 = self.builder.get_fp32(0)
            ret_scalar_ty = tl.float32
        else:
            _0 = self.builder.get_fp16(0) if out_dtype.is_fp16() else self.builder.get_fp32(0)
            ret_scalar_ty = out_dtype

        M = lhs.type.shape[-2]
        N = rhs.type.shape[-1]
        K = lhs.type.shape[-1]
        B = lhs.type.shape[0] if lhs_rank == 3 else None
        ret_ty = tl.block_type(ret_scalar_ty, [B, M, N] if B else [M, N])
        if acc is None:
            acc_handle = self.builder.create_splat(ret_ty.to_ir(self.builder), _0)
        else:
            acc_handle = acc.handle
            assert acc.type == ret_ty

        # max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90
        if max_num_imprecise_acc is None:
            if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
                max_num_imprecise_acc = self.builder.options.max_num_imprecise_acc_default
            else:
                max_num_imprecise_acc = 0
        else:
            if lhs.dtype.is_fp8() and rhs.dtype.is_fp8() and max_num_imprecise_acc > K:
                raise ValueError(f"max_num_imprecise_acc ({max_num_imprecise_acc}) must be <= K ({K})")

        return self.tensor(
            self.builder.create_dot(lhs.handle, rhs.handle, acc_handle, input_precision, max_num_imprecise_acc), ret_ty)

    def _str_to_fp_type(self, float_format: str):
        ty_enum = getattr(ir.ScaleDotElemTypeTY, float_format.upper(), None)
        if ty_enum is None:
            raise ValueError(f"Invalid float format: {float_format}.")
        return ty_enum

    def _bitcast_to_fp_type(self, val: TensorTy, float_format: str):
        """
        If float_format is subbyte, make sure it's packed as uint8 and return it.
        Otherwise, return a tensor (perhaps bitcasting) of the specified float format.
        """
        triton_ty = {"e5m2": tl.float8e5, "e4m3": tl.float8e4nv, "bf16": tl.bfloat16, "fp16":
                     tl.float16}.get(float_format)
        if triton_ty is None:
            assert float_format == "e2m1", f"Internal Error: Unexpected float format: {float_format}"
            assert val.dtype == tl.uint8, f"e2m1 format must be packed as uint8. Got {val.dtype}"
            return val
        if val.dtype == triton_ty:
            return val
        else:
            unsigned_ty = {"e5m2": tl.uint8, "e4m3": tl.uint8, "bf16": tl.uint16, "fp16": tl.uint16}[float_format]
            assert val.dtype == unsigned_ty, f"Unexpected dtype for {float_format}. Got {val.dtype}"
            return self.bitcast(val, triton_ty)

    def dot_scaled(self, lhs: TensorTy, lhs_scale: TensorTy, lhs_format: str, rhs: TensorTy,
                   rhs_scale: Optional[TensorTy], rhs_format: str, acc: TensorTy | None, fast_math: bool,
                   lhs_k_pack: bool, rhs_k_pack: bool, out_dtype: tl.dtype) -> TensorTy:
        assert lhs.type.is_block() and rhs.type.is_block()
        #TODO: validate types.
        lhs_rank = len(lhs.shape)
        rhs_rank = len(rhs.shape)
        assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
        lhs_format: str = lhs_format.value
        rhs_format: str = rhs_format.value
        lhs_format_enum = self._str_to_fp_type(lhs_format)
        rhs_format_enum = self._str_to_fp_type(rhs_format)
        allowed_formats = {"e2m1", "e4m3", "e5m2", "bf16", "fp16"}
        assert lhs_format in allowed_formats, f"NYI: lhs_format {lhs_format}"
        assert rhs_format in allowed_formats, f"NYI: rhs_format {rhs_format}"
        rhs_scale_is_none = rhs_scale is None or (isinstance(rhs_scale, tl.constexpr) and rhs_scale.value is None)
        lhs_scale_is_none = lhs_scale is None or (isinstance(lhs_scale, tl.constexpr) and lhs_scale.value is None)
        lhs = self._bitcast_to_fp_type(lhs, lhs_format)
        rhs = self._bitcast_to_fp_type(rhs, rhs_format)

        assert lhs_k_pack or lhs_format == "e2m1", "only mxfp4 inputs can be packed along a dimension different than K"
        assert rhs_k_pack or rhs_format == "e2m1", "only mxfp4 inputs can be packed along a dimension different than K"
        M, K_LHS = lhs.type.shape[-2:]
        K_RHS, N = rhs.type.shape[-2:]
        PACKED_A = 2 if lhs_format == "e2m1" else 1
        PACKED_B = 2 if rhs_format == "e2m1" else 1
        PACKED_A_DIM = PACKED_A * K_LHS if lhs_k_pack else K_LHS
        PACKED_B_DIM = PACKED_B * K_RHS if rhs_k_pack else K_RHS
        assert PACKED_B_DIM == PACKED_A_DIM, f"Reduction dimension should pack the same number of elements; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
        #assert K * PACKED_B >= 64, f"scaled_dot NYI for K < 64. Got {K=}"
        B = lhs.type.shape[0] if lhs_rank == 3 else None
        if not lhs_k_pack:
            M = M * PACKED_A
        if not rhs_k_pack:
            N = N * PACKED_B
        ret_ty = tl.block_type(out_dtype, [B, M, N] if B else [M, N])
        _0 = self.builder.get_fp32(0)
        if acc is None:
            acc_handle = self.builder.create_splat(ret_ty.to_ir(self.builder), _0)
        else:
            acc_handle = acc.handle
            assert acc.type == ret_ty
        rhs_scale_handle = None if rhs_scale_is_none else rhs_scale.handle
        lhs_scale_handle = None if lhs_scale_is_none else lhs_scale.handle
        return self.tensor(
            self.builder.create_dot_scaled(lhs.handle, lhs_scale_handle, lhs_format_enum, rhs.handle, rhs_scale_handle,
                                           rhs_format_enum, fast_math, lhs_k_pack, rhs_k_pack, acc_handle), ret_ty)

# ===----------------------------------------------------------------------===//
#                               Indexing
# ===----------------------------------------------------------------------===//

    def where(self, condition: TensorTy, x: TensorTy, y: TensorTy) -> TensorTy:
        if condition.dtype != tl.int1:
            warnings.warn(
                f"tl.where with a non-boolean condition is deprecated and will error out in a future triton release. Got {condition.dtype}"
            )
        condition = self.cast(condition, tl.int1)
        x, y = self.binary_op_type_checking_impl(x, y, True, True)
        # x, y are broadcasted
        if condition.type.is_block():
            condition, x = self.broadcast_impl_value(condition, x)
            x, y = self.broadcast_impl_value(x, y)
        else:
            condition, _ = self.broadcast_impl_value(condition, x)
        ret_ty = x.type
        return self.tensor(self.builder.create_select(condition.handle, x.handle, y.handle), ret_ty)

# ===----------------------------------------------------------------------===//
#                               Reduction
# ===----------------------------------------------------------------------===

    def wrap_tensor(self, x, scalar_ty, ret_shape):
        if ret_shape:
            res_ty = tl.block_type(scalar_ty, ret_shape)
        else:
            # 0d-tensor -> scalar
            res_ty = scalar_ty
        return self.tensor(x, res_ty)

    def reduction(self, inputs: Sequence[TensorTy], axis: int, region_builder_fn) -> Tuple[TensorTy, ...]:
        if axis is None:
            inputs = tuple(self.reshape(t, [t.numel.value], can_reorder=True) for t in inputs)
            axis = 0
        # get result shape
        shape = inputs[0].type.shape
        rank = len(shape)
        assert axis < rank, f"reduction axis must be < inputs rank ({rank})"
        ret_shape = [s for i, s in enumerate(shape) if i != axis]
        assert all(t.type.shape == shape for t in inputs), "all reduction inputs must have the same shape"

        reduce_op = self.builder.create_reduce([t.handle for t in inputs], axis)
        region_builder_fn(reduce_op)
        assert reduce_op.verify()

        return tuple(
            self.wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar, ret_shape) for i in range(len(inputs)))

# ===----------------------------------------------------------------------===
#                               Associative Scan
# ===----------------------------------------------------------------------===

    def associative_scan(self, inputs: Sequence[TensorTy], axis: int, region_builder_fn,
                         reverse: bool) -> Tuple[TensorTy, ...]:
        shape = inputs[0].type.shape
        rank = len(shape)

        assert -rank <= axis < rank, f"scan axis {axis} must be < inputs rank ({rank})"

        if axis < 0:
            axis += rank

        for t in inputs:
            assert t.type.shape == shape, "all scan inputs must have the same shape"

        scan_op = self.builder.create_scan([t.handle for t in inputs], axis, reverse)
        region_builder_fn(scan_op)
        assert scan_op.verify()

        return tuple(self.wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar, shape) for i in range(len(inputs)))

# ===----------------------------------------------------------------------===
#                               Gather
# ===----------------------------------------------------------------------===

    def gather(self, src: TensorTy, index: TensorTy, axis: int) -> TensorTy:
        assert index.dtype.is_int(), "index must be an integer tensor"

        rank = len(src.type.shape)
        assert len(index.type.shape) == rank, "source and index tensors must have the same rank"

        assert -rank <= axis < rank, f"gather axis {axis} must be < source rank ({rank})"
        if axis < 0:
            axis += rank

        for d in range(rank):
            if d == axis:
                continue
            assert index.type.shape[d] == src.type.shape[d], f"index dim {axis} must match the corresponding source dim"

        gather = self.builder.create_gather(src.handle, index.handle, axis)
        return self.wrap_tensor(gather, src.type.scalar, index.type.shape)


# ===----------------------------------------------------------------------===
#                               Histogram
# ===----------------------------------------------------------------------===

    def histogram(self, input: TensorTy, num_bins: int, mask: Optional[TensorTy]) -> TensorTy:
        assert len(input.shape) == 1, "histogram only supports 1D input"
        assert input.dtype.is_int(), "histogram only supports integer input"
        if mask is not None:
            mask = self.broadcast_impl_shape(mask, input.shape)
            if not mask.type.scalar.is_bool():
                raise ValueError("Mask must have boolean scalar type")
            mask = mask.handle
        return self.tensor(self.builder.create_histogram(input.handle, num_bins, mask),
                           tl.block_type(tl.int32, [num_bins]))

    def multiple_of(self, x: TensorTy, values: List[int]) -> TensorTy:
        if max(1, len(x.shape)) != len(values):
            raise ValueError("Shape of input to multiple_of does not match the length of values")
        x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context()))
        return x

    def max_contiguous(self, x: TensorTy, values: List[int]) -> TensorTy:
        if len(x.shape) != len(values):
            raise ValueError("Shape of input to max_contiguous does not match the length of values")
        x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context()))
        return x

    def max_constancy(self, x: TensorTy, values: List[int]) -> TensorTy:
        if len(x.shape) != len(values):
            raise ValueError("Shape of input to max_constancy does not match the length of values")
        x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context()))
        return x

    def debug_barrier(self) -> TensorTy:
        return self.tensor(self.builder.create_barrier(), tl.void)

    def device_print(self, prefix: str, args: List[TensorTy], hex: bool) -> TensorTy:
        # It makes sense visually for prefix to end in ": "; make it so.  Also,
        # non-empty prefixes should start with " ".
        if not prefix.endswith(" ") and args:
            prefix += " "
        if not prefix.endswith(": ") and args:
            prefix = prefix[:-1] + ": "
        if len(prefix) > 2 and not prefix.startswith(" "):
            prefix = " " + prefix

        new_args = [arg.handle for arg in args]
        is_signed = [arg.dtype.is_int_signed() for arg in args]
        return self.tensor(self.builder.create_print(prefix, hex, new_args, is_signed), tl.void)

    def device_assert(self, cond: TensorTy, msg: str) -> TensorTy:
        if not self.builder.options.debug:
            return
        return self.tensor(self.builder.create_assert(cond.handle, msg), tl.void)

    def assume(self, cond) -> TensorTy:
        return self.tensor(self.builder.create_assume(cond.handle), tl.void)

    def _convert_elem_to_ir_value(self, elem, require_i64):
        if isinstance(elem, int):
            elem = tl.constexpr(elem)
        if isinstance(elem, tl.constexpr):
            if isinstance(elem.value, bool):
                return self.builder.get_int1(elem.value)
            if require_i64:
                assert -2**63 <= elem.value < 2**63, f"Block pointers only support 64 bit `shape/strides`, " \
                    f"got a value {elem.value} which is out of the range"
                return self.builder.get_int64(elem.value)
            else:
                assert -2**31 <= elem.value < 2**31, f"Block pointers only support 32 bit `offsets/block_shape`, " \
                    f"got a value {elem.value} which is out of the range"
                return self.builder.get_int32(elem.value)
        elif isinstance(elem, tl.tensor):
            assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets"
            assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets"
            if elem.dtype != tl.int64 and require_i64:
                return self.builder.create_int_cast(elem.handle, self.builder.get_int64_ty(),
                                                    elem.dtype.is_int_signed())
            elif elem.dtype != tl.int32 and not require_i64:
                assert False, "Block pointers only support 32 bit `offsets/block_shape`, " \
                    "add a `.to(tl.int32)` or use regular indexing for 64 bit support"
            return elem.handle
        assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}"

    def _convert_to_ir_values(self, list_like, require_i64=True):
        if hasattr(list_like, "__iter__"):
            return [self._convert_elem_to_ir_value(elem, require_i64) for elem in list_like]
        return [self._convert_elem_to_ir_value(list_like, require_i64)]

    def make_block_ptr(self, base: TensorTy, shape, strides, offsets, block_shape, order) -> TensorTy:
        # Convert dynamic arguments to IR values
        # NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t`
        shape = self._convert_to_ir_values(shape)
        strides = self._convert_to_ir_values(strides)
        offsets = self._convert_to_ir_values(offsets, require_i64=False)

        # Check `base` type
        if not base.type.is_ptr() or base.type.element_ty.is_block():
            raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)")

        # Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
        if base.type.element_ty == tl.int1:
            base = self.cast(base, tl.pointer_type(tl.int8, base.type.address_space))

        # Check whether `block_shape` is static
        if not hasattr(block_shape, "__iter__"):
            block_shape = [block_shape]
        block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape]
        assert all(isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape), \
            "Expected a list of constant integers (`int32_t` range) in `block_shape`"

        # Check `order`
        if not hasattr(order, "__iter__"):
            order = [order]
        order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order]
        assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order"

        # Must have same length
        assert all(len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]), \
            "Expected shape/strides/offsets/block_shape to have the same length"

        # Build value, the type is:
        #   `pointer_type<blocked<shape, element_type>>` in Python
        #   `tt.ptr<tensor<shape, element_type>>` in MLIR
        handle = self.builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order)
        return self.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape)))

    def advance(self, base: TensorTy, offsets) -> TensorTy:
        # Convert dynamic offsets to IR values
        offsets = self._convert_to_ir_values(offsets, require_i64=False)

        # Advanced block pointer type is the same as before
        return self.tensor(self.builder.create_advance(base.handle, offsets), base.type)

    def make_tensor_descriptor(
        self,
        base: TensorTy,
        shape: List[TensorTy],
        strides: List[TensorTy],
        block_shape: List[tl.constexpr],
    ) -> tl.tensor_descriptor:
        ndim = len(shape)
        if not (1 <= ndim <= 5):
            raise ValueError(f"Expected 1 <= ndim <= 5 but got {ndim} dimensions")
        if len(strides) != ndim:
            raise ValueError(f"Expected {ndim} strides but got {len(strides)}")
        if len(block_shape) != ndim:
            raise ValueError(f"Expected block_shape to have {ndim} dimensions but got {len(strides)}")
        assert isinstance(base.dtype, tl.pointer_type)
        elem_size = base.dtype.element_ty.primitive_bitwidth // 8
        contig_dim_size = tl._unwrap_if_constexpr(block_shape[-1])
        if contig_dim_size * elem_size < 16:
            raise ValueError(
                f"Descriptor block shape must have at least 16 bytes in the last dimension, but got {contig_dim_size} * {elem_size} = {contig_dim_size * elem_size} bytes"
            )

        strides[-1] = tl._unwrap_if_constexpr(strides[-1])
        if strides[-1] != 1:
            raise ValueError(f"Tensor descriptor last dim must be 1 but got {strides[-1]}")

        shape = [self.make_scalar(x, tl.int32) for x in shape]
        strides = [self.make_scalar(x, tl.int64) for x in strides]

        # Check whether `block_shape` is static
        block_shape = tl._unwrap_shape(block_shape)

        assert isinstance(base.type, tl.pointer_type)
        type = tl.block_type(base.type.element_ty, block_shape)
        base_handle = base.handle
        is_signed_int = base.type.element_ty.is_int_signed()

        handle = self.builder.create_make_tensor_descriptor(base_handle, [s.handle for s in shape],
                                                            [s.handle for s in strides], block_shape, is_signed_int)
        return tl.tensor_descriptor(handle, shape, strides, type)
