a
    h($                  	   @   sv  d dl mZ d dlmZmZmZ d dlZd dlmZmZ d dl	m
Z
mZ ddlmZmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZmZ d	dlmZmZmZmZmZ ddl m!Z!m"Z" g dZ#G dd deZ$G dd deZ%G dd deZ&e'e e(ee e)e)ee&dddZ*G dd deZ+eddeddd  fd!dd"d#d$eee+ef  e)e)ee&d%d&d'Z,dS )(    )partial)AnyOptionalUnionN)nnTensor)DeQuantStub	QuantStub   )Conv2dNormActivationSqueezeExcitation)ImageClassification   )register_modelWeightsWeightsEnum)_IMAGENET_CATEGORIES)_ovewrite_named_paramhandle_legacy_interface)_mobilenet_v3_confInvertedResidualInvertedResidualConfigMobileNet_V3_Large_WeightsMobileNetV3   )_fuse_modules_replace_relu)QuantizableMobileNetV3#MobileNet_V3_Large_QuantizedWeightsmobilenet_v3_largec                       s\   e Zd ZdZeedd fddZeedddZdee	 dd	d
dZ
 fddZ  ZS )QuantizableSqueezeExcitationr   Nargskwargsreturnc                    s,   t j|d< t j|i | t j | _d S )NZscale_activation)r   ZHardsigmoidsuper__init__	quantizedFloatFunctionalskip_mulselfr"   r#   	__class__ Y/var/www/auris/lib/python3.9/site-packages/torchvision/models/quantization/mobilenetv3.pyr&   !   s    
z%QuantizableSqueezeExcitation.__init__)inputr$   c                 C   s   | j | ||S N)r)   mulZ_scale)r+   r0   r.   r.   r/   forward&   s    z$QuantizableSqueezeExcitation.forwardis_qatr$   c                 C   s   t | ddg|dd d S )NZfc1Z
activationTZinplace)r   )r+   r5   r.   r.   r/   
fuse_model)   s    z'QuantizableSqueezeExcitation.fuse_modelc              	      s   | dd }t| dr|d u s&|dk rtdgtdgtjdgtjdtjdgtjdtdgtdgd}	|	 D ] \}
}||
 }||vr||||< q|t ||||||| d S )	Nversionqconfigr   g      ?r   )Zdtyper   )z.scale_activation.activation_post_process.scalezFscale_activation.activation_post_process.activation_post_process.scalez3scale_activation.activation_post_process.zero_pointzKscale_activation.activation_post_process.activation_post_process.zero_pointz;scale_activation.activation_post_process.fake_quant_enabledz9scale_activation.activation_post_process.observer_enabled)gethasattrtorchZtensorint32itemsr%   _load_from_state_dict)r+   Z
state_dictprefixZlocal_metadatastrictZmissing_keysZunexpected_keysZ
error_msgsr8   Zdefault_state_dictkvZfull_keyr,   r.   r/   r?   ,   s0    






z2QuantizableSqueezeExcitation._load_from_state_dict)N)__name__
__module____qualname___versionr   r&   r   r3   r   boolr7   r?   __classcell__r.   r.   r,   r/   r       s
   r    c                       s6   e Zd Zeedd fddZeedddZ  ZS )QuantizableInvertedResidualNr!   c                    s&   t  j|dti| tj | _d S )NZse_layer)r%   r&   r    r   r'   r(   skip_addr*   r,   r.   r/   r&   U   s    z$QuantizableInvertedResidual.__init__xr$   c                 C   s(   | j r| j|| |S | |S d S r1   )Zuse_res_connectrK   addblockr+   rM   r.   r.   r/   r3   Y   s    z#QuantizableInvertedResidual.forward)rD   rE   rF   r   r&   r   r3   rI   r.   r.   r,   r/   rJ   S   s   rJ   c                       sL   e Zd Zeedd fddZeedddZdee ddd	d
Z	  Z
S )r   Nr!   c                    s&   t  j|i | t | _t | _dS )zq
        MobileNet V3 main class

        Args:
           Inherits args from floating point MobileNetV3
        N)r%   r&   r	   quantr   dequantr*   r,   r.   r/   r&   a   s    zQuantizableMobileNetV3.__init__rL   c                 C   s"   |  |}| |}| |}|S r1   )rQ   Z_forward_implrR   rP   r.   r.   r/   r3   l   s    


zQuantizableMobileNetV3.forwardr4   c                 C   sv   |   D ]h}t|tu rZddg}t|dkrHt|d tju rH|d t|||dd qt|tu r|	| qd S )N01r
   r   2Tr6   )
modulestyper   lenr   ZReLUappendr   r    r7   )r+   r5   mZmodules_to_fuser.   r.   r/   r7   r   s    
z!QuantizableMobileNetV3.fuse_model)N)rD   rE   rF   r   r&   r   r3   r   rH   r7   rI   r.   r.   r,   r/   r   `   s   r   )inverted_residual_settinglast_channelweightsprogressquantizer#   r$   c                 K   s   |d ur:t |dt|jd  d|jv r:t |d|jd  |dd}t| |fdti|}t| |r|jdd tj	j
||_tj	j
j|dd |d ur||j|dd	 |rtj	j
j|dd |  |S )
NZnum_classes
categoriesbackendqnnpackrO   T)r5   r6   )r^   Z
check_hash)r   rX   metapopr   rJ   r   r7   r<   ZaoZquantizationZget_default_qat_qconfigr9   Zprepare_qatZload_state_dictZget_state_dictconverteval)r[   r\   r]   r^   r_   r#   ra   modelr.   r.   r/   _mobilenet_v3_model}   s"    
rh   c                   @   sH   e Zd Zedeeddddeddejdd	d
didddd
dZ	e	Z
dS )r   zUhttps://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth   )Z	crop_sizeiS )r   r   rb   zUhttps://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3zImageNet-1KgK7A@R@gxV@)zacc@1zacc@5g-?gҍ5@z
                These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
                weights listed below.
            )
Z
num_paramsZmin_sizer`   ra   ZrecipeZunquantizedZ_metricsZ_ops
_file_sizeZ_docs)urlZ
transformsrc   N)rD   rE   rF   r   r   r   r   r   IMAGENET1K_V1IMAGENET1K_QNNPACK_V1DEFAULTr.   r.   r.   r/   r      s(   
r   Zquantized_mobilenet_v3_large)nameZ
pretrainedc                 C   s   |  ddrtjS tjS )Nr_   F)r:   r   rm   r   rl   )r#   r.   r.   r/   <lambda>   s    
rp   )r]   TF)r]   r^   r_   )r]   r^   r_   r#   r$   c                 K   s<   |rt nt| } tdi |\}}t||| ||fi |S )a  
    MobileNetV3 (Large) model from
    `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

    Args:
        weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool): If True, displays a progress bar of the
            download to stderr. Default is True.
        quantize (bool): If True, return a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights
        :members:
    .. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
        :members:
        :noindex:
    r   )r   )r   r   verifyr   rh   )r]   r^   r_   r#   r[   r\   r.   r.   r/   r      s    /r   )-	functoolsr   typingr   r   r   r<   r   r   Ztorch.ao.quantizationr   r	   Zops.miscr   r   Ztransforms._presetsr   Z_apir   r   r   Z_metar   _utilsr   r   Zmobilenetv3r   r   r   r   r   utilsr   r   __all__r    rJ   r   listintrH   rh   r   r   r.   r.   r.   r/   <module>   sP   5$