a
    h                     @   s&  d dl Z d dlZd dlmZmZ d dlmZ d dlZd dlm	Z	m
Z
 d dlmZmZmZ g dZeee ddd	Zeee ee d
ddZeedddZe
jfeeeedddZeedddZd!eee edddZededeeedddZeedddZeejeddd ZdS )"    N)AnyOptional)
deprecated)_ShardingIterDataPipeSHARDING_PRIORITIES)DataPipeDataPipeGraphtraverse_dps)apply_random_seedapply_shardingapply_shuffle_seedapply_shuffle_settingsget_all_graph_pipes)graphreturnc                 C   s   t | t S N)_get_all_graph_pipes_helperset)r    r   M/var/www/auris/lib/python3.9/site-packages/torch/utils/data/graph_settings.pyr      s    r   )r   id_cacher   c                 C   sL   g }|   D ]:\}\}}||v r"q|| || |t|| q|S r   )itemsaddappendextendr   )r   r   resultsZdp_iddatapipe	sub_graphr   r   r   r      s    

r   )r   r   c                 C   s    t | tpt| dot| jS )Nr   )
isinstancer   hasattrinspectismethodr   r   r   r   r   _is_sharding_datapipe)   s    


r#   )r   num_of_instancesinstance_idr   c                    s(   t | }d fdd	  | | S )z
    Apply dynamic sharding over the ``sharding_filter`` DataPipe that has a method ``apply_sharding``.

    RuntimeError will be raised when multiple ``sharding_filter`` are presented in the same branch.
    Nc                    s   |   D ]\}}d }t|rt|d ur8td| d| t|j}t|jdk r`| n|jd |}|d u r|} || qd S )NzoSharding twice on a single pipeline is likely unintended and will cause data loss. Sharding already applied to z while trying to apply to    )sharding_group)valuesr#   RuntimeErrorr    	signaturer   len
parameters)r   Zprev_appliedZdpr   Zappliedsig_helperr%   r$   r'   r   r   r/   =   s*    zapply_sharding.<locals>._helper)N)r	   )r   r$   r%   r'   r   r   r.   r   r   0   s    r   c                 C   s,   t | do*t | do*t| jo*t| jS )Nset_shuffleset_seed)r   r    r!   r0   r1   r"   r   r   r   _is_shuffle_datapipeX   s    


r2   )r   shuffler   c                 C   sb   |du r| S t | }t|}dd |D }|sJ|rJtd |  } | g}|D ]}|| qN| S )aE  
    Traverse the graph of ``DataPipes`` to find and set shuffle attribute.

    Apply the method to each `DataPipe` that has APIs of ``set_shuffle``
    and ``set_seed``.

    Args:
        datapipe: DataPipe that needs to set shuffle attribute
        shuffle: Shuffle option (default: ``None`` and no-op to the graph)
    Nc                 S   s   g | ]}t |r|qS r   )r2   ).0piper   r   r   
<listcomp>s       z*apply_shuffle_settings.<locals>.<listcomp>z`shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. Be aware that the default buffer size might not be sufficient for your task.)r	   r   warningswarnr3   r0   )r   r3   r   	all_pipesZ	shufflersZshufflerr   r   r   r   a   s    r   z`apply_shuffle_seed` is deprecated since 1.12 and will be removed in the future releases. Please use `apply_random_seed` instead.)category)r   rngr   c                 C   s
   t | |S r   )r
   )r   r<   r   r   r   r      s    r   c                 C   s   t | dot| jS )Nr1   )r   r    r!   r1   r"   r   r   r   _is_random_datapipe   s    r=   c                 C   s   t | }t|}t }g }|D ]2}t||v r0qt|r|| |t| q|D ].}ttj	dtj
dj|d }|| qV| S )a6  
    Traverse the graph of ``DataPipes`` to find random ``DataPipe`` with an API of ``set_seed``.

    Then set the random seed based on the provided RNG to those ``DataPipe``.

    Args:
        datapipe: DataPipe that needs to set randomness
        rng: Random number generator to generate random seeds
    r   )Zdtype)	generator)r	   r   r   idr=   r   r   inttorchemptyint64Zrandom_itemr1   )r   r<   r   r:   cacheZrandom_datapipesr5   Zrandom_seedr   r   r   r
      s     

r
   )N) r    r8   typingr   r   Ztyping_extensionsr   rA   Z(torch.utils.data.datapipes.iter.shardingr   r   Ztorch.utils.data.graphr   r   r	   __all__listr   r   r@   r   boolr#   DEFAULTr   r2   r   FutureWarningr   r=   	Generatorr
   r   r   r   r   <module>   s@   	(
 #