a
    h~X                     @   s   d dl mZ d dlmZ d dlmZmZmZ d dlZd dlm	Z	 d dl
mZmZmZ g dZedZeed	ed
diZeeegef dddZeeejejddddZeddjf i eddddejdddeee eeeej ejeej ee	d	ddZeddjf i eddejdddeeeej ejeej ee	ddd Zed!d"jf i edddejddd#eeeeej ejeej ee	d$d%d&Zed'd(jf i ed)ddejddd*eeeeej ejeej ee	d+d,d-Zed.d/jf i eddejdddeeeej ejeej ee	dd0d1Z ed2d3jf i eddejdddeeeej ejeej ee	dd4d5Z!ed6d7jf i eddejdddeeeej ejeej ee	dd8d9Z"ed:d;jf i eddejdddeeeej ejeej ee	dd<d=Z#ed>d?jf i eddejdddeeeej ejeej ee	d@dAdBZ$edCdDjf i edEddejdddFeeeej ejeej ee	dGdHdIZ%edJdKjf i eddejdddeeeej ejeej ee	ddLdMZ&dS )N    )Iterable)sqrt)CallableOptionalTypeVarN)Tensor)factory_common_argsmerge_dictsparse_kwargs)bartlettblackmancosineexponentialgaussiangeneral_cosinegeneral_hamminghamminghannkaisernuttall_Ta6  
    M (int): the length of the window.
        In other words, the number of points of the returned window.
    sym (bool, optional): If `False`, returns a periodic window suitable for use in spectral analysis.
        If `True`, returns a symmetric window suitable for use in filter design. Default: `True`.
ZnormalizationzThe window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if :attr:`M` is even and :attr:`sym` is `True`.)argsreturnc                     s   t t d fdd}|S )a8  Adds docstrings to a given decorated function.

    Specially useful when then docstrings needs string interpolation, e.g., with
    str.format().
    REMARK: Do not use this function if the docstring doesn't need string
    interpolation, just write a conventional docstring.

    Args:
        args (str):
    )or   c                    s   d  | _| S )N )join__doc__)r   r    J/var/www/auris/lib/python3.9/site-packages/torch/signal/windows/windows.py	decorator8   s    z_add_docstr.<locals>.decorator)r   )r   r    r   r   r   _add_docstr,   s    r!   )function_nameMdtypelayoutr   c                 C   s\   |dk rt |  d| |tjur6t |  d| |tjtjfvrXt |  d| dS )a  Performs common checks for all the defined windows.
    This function should be called before computing any window.

    Args:
        function_name (str): name of the window function.
        M (int): length of the window.
        dtype (:class:`torch.dtype`): the desired data type of returned tensor.
        layout (:class:`torch.layout`): the desired layout of returned tensor.
    r   z, requires non-negative window length, got M=z/ is implemented for strided tensors only, got: z) expects float32 or float64 dtypes, got: N)
ValueErrortorchstridedfloat32float64)r"   r#   r$   r%   r   r   r   _window_function_checks?   s    
r+   z
Computes a window with an exponential waveform.
Also known as Poisson window.

The exponential window is defined as follows:

.. math::
    w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)}

where `c` is the ``center`` of the window.
    aF  

{normalization}

Args:
    {M}

Keyword args:
    center (float, optional): where the center of the window will be located.
        Default: `M / 2` if `sym` is `False`, else `(M - 1) / 2`.
    tau (float, optional): the decay value.
        Tau is generally associated with a percentage, that means, that the value should
        vary within the interval (0, 100]. If tau is 100, it is considered the uniform window.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0.
    >>> # The center will be at (M - 1) / 2, where M is 10.
    >>> torch.signal.windows.exponential(10)
    tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111])

    >>> # Generates a periodic exponential window and decay factor equal to .5
    >>> torch.signal.windows.exponential(10, sym=False,tau=.5)
    tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
          ?TF)centertausymr$   r%   devicerequires_grad)	r#   r-   r.   r/   r$   r%   r0   r1   r   c          
   	   C   s   |d u rt  }td| || |dkr6td| d|rJ|d urJtd| dkrft jd||||dS |d u r|s~| dkr~| n| d d	 }d| }t j| | | | d  | | ||||d
}	t t |	 S )Nr   r   zTau must be positive, got: 	 instead.z)Center must be None for symmetric windowsr   r$   r%   r0   r1             @startendZstepsr$   r%   r0   r1   )r'   get_default_dtyper+   r&   emptylinspaceexpabs)
r#   r-   r.   r/   r$   r%   r0   r1   constantkr   r   r   r   Y   s0    9

r   a  
Computes a window with a simple cosine waveform, following the same implementation as SciPy.
This window is also known as the sine window.

The cosine window is defined as follows:

.. math::
    w_n = \sin\left(\frac{\pi (n + 0.5)}{M}\right)

This formula differs from the typical cosine window formula by incorporating a 0.5 term in the numerator,
which shifts the sample positions. This adjustment results in a window that starts and ends with non-zero values.

a  

{normalization}

Args:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric cosine window.
    >>> torch.signal.windows.cosine(10)
    tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564])

    >>> # Generates a periodic cosine window.
    >>> torch.signal.windows.cosine(10, sym=False)
    tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
r/   r$   r%   r0   r1   )r#   r/   r$   r%   r0   r1   r   c          	   	   C   s   |d u rt  }td| || | dkr:t jd||||dS d}t j|sV| dkrV| d n|  }t j|| || d  | | ||||d}t |S )Nr   r   r3   r4         ?r5   r7   )r'   r:   r+   r;   pir<   sin	r#   r/   r$   r%   r0   r1   r8   r?   r@   r   r   r   r      s&    2

r   z
Computes a window with a gaussian waveform.

The gaussian window is defined as follows:

.. math::
    w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}
    a   

{normalization}

Args:
    {M}

Keyword args:
    std (float, optional): the standard deviation of the gaussian. It controls how narrow or wide the window is.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.gaussian(10)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])

    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
)stdr/   r$   r%   r0   r1   )r#   rF   r/   r$   r%   r0   r1   r   c          
   	   C   s   |d u rt  }td| || |dkr6td| d| dkrRt jd||||dS |sb| dkrb| n| d  d }d|td	  }t j|| || d  | | ||||d
}	t |	d	  S )Nr   r   z*Standard deviation must be positive, got: r2   r3   r4   r5   r6      r7   )r'   r:   r+   r&   r;   r   r<   r=   )
r#   rF   r/   r$   r%   r0   r1   r8   r?   r@   r   r   r   r      s*    0

r   aK  
Computes the Kaiser window.

The Kaiser window is defined as follows:

.. math::
    w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )

where ``I_0`` is the zeroth order modified Bessel function of the first kind (see :func:`torch.special.i0`), and
``N = M - 1 if sym else M``.
    a  

{normalization}

Args:
    {M}

Keyword args:
    beta (float, optional): shape parameter for the window. Must be non-negative. Default: 12.0
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.kaiser(5)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.kaiser(5, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
g      (@)betar/   r$   r%   r0   r1   )r#   rH   r/   r$   r%   r0   r1   r   c             	   C   s   |d u rt  }td| || |dk r6td| d| dkrRt jd||||dS | dkrnt jd||||dS t j|||d	}| }d
| |s| n| d  }t ||| d |  }	t j||	| ||||d}
t 	t 
|| t |
d t 	| S )Nr   r   z beta must be non-negative, got: r2   r3   r4   r5   r5   )r$   r0   r6   r7   rG   )r'   r:   r+   r&   r;   onestensorZminimumr<   Zi0r   pow)r#   rH   r/   r$   r%   r0   r1   r8   r?   r9   r@   r   r   r   r   N  s6    1


r   z
Computes the Hamming window.

The Hamming window is defined as follows:

.. math::
    w_n = \alpha - \beta\ \cos \left( \frac{2 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    alpha (float, optional): The coefficient :math:`\alpha` in the equation above.
    beta (float, optional): The coefficient :math:`\beta` in the equation above.
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window.
    >>> torch.signal.windows.hamming(10)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hamming window.
    >>> torch.signal.windows.hamming(10, sym=False)
    tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])
c                C   s   t | |||||dS )NrA   r   r#   r/   r$   r%   r0   r1   r   r   r   r     s    /r   z
Computes the Hann window.

The Hann window is defined as follows:

.. math::
    w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] =
    \sin^2 \left( \frac{\pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hann window.
    >>> torch.signal.windows.hann(10)
    tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])

    >>> # Generates a periodic Hann window.
    >>> torch.signal.windows.hann(10, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
c             	   C   s   t | d|||||dS )NrB   alphar/   r$   r%   r0   r1   rM   rN   r   r   r   r     s    .r   z
Computes the Blackman window.

The Blackman window is defined as follows:

.. math::
    w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Blackman window.
    >>> torch.signal.windows.blackman(5)
    tensor([-1.4901e-08,  3.4000e-01,  1.0000e+00,  3.4000e-01, -1.4901e-08])

    >>> # Generates a periodic Blackman window.
    >>> torch.signal.windows.blackman(5, sym=False)
    tensor([-1.4901e-08,  2.0077e-01,  8.4923e-01,  8.4923e-01,  2.0077e-01])
c             	   C   s8   |d u rt  }td| || t| g d|||||dS )Nr   )gzG?rB   g{Gz?ar/   r$   r%   r0   r1   )r'   r:   r+   r   rN   r   r   r   r     s    -r   a4  
Computes the Bartlett window.

The Bartlett window is defined as follows:

.. math::
    w_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases}
        \frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\
        2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Bartlett window.
    >>> torch.signal.windows.bartlett(10)
    tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])

    >>> # Generates a periodic Bartlett window.
    >>> torch.signal.windows.bartlett(10, sym=False)
    tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
c          	   	   C   s   |d u rt  }td| || | dkr:t jd||||dS | dkrVt jd||||dS d}d|sd| n| d  }t j||| d |  | ||||d	}dt | S )
Nr   r   r3   r4   r5   rI   rG   r7   )r'   r:   r+   r;   rJ   r<   r>   rE   r   r   r   r   T  s.    /


r   z
Computes the general cosine window.

The general cosine window is defined as follows:

.. math::
    w_n = \sum^{M-1}_{i=0} (-1)^i a_i \cos{ \left( \frac{2 \pi i n}{M - 1}\right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    a (Iterable): the coefficients associated to each of the cosine functions.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric general cosine window with 3 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.46, 0.23, 0.31], sym=True)
    tensor([0.5400, 0.3376, 0.1288, 0.4200, 0.9136, 0.9136, 0.4200, 0.1288, 0.3376, 0.5400])

    >>> # Generates a periodic general cosine window with 2 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.5, 1 - 0.5], sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
)rR   r/   r$   r%   r0   r1   r   c             	   C   s  |d u rt  }td| || | dkr:t jd||||dS | dkrVt jd||||dS t|tshtd|sttdd	t j	 |s| n| d  }t j
d| d | | ||||d
}t jdd t|D |||d}	t j|	jd |	j|	j|	jd}
|	dt |
d|  dS )Nr   r   r3   r4   r5   rI   z!Coefficients must be a list/tuplezCoefficients cannot be emptyrG   r7   c                 S   s   g | ]\}}d | | qS )rS   r   ).0iwr   r   r   
<listcomp>      z"general_cosine.<locals>.<listcomp>)r0   r$   r1   )r$   r0   r1   rS   )r'   r:   r+   r;   rJ   
isinstancer   	TypeErrorr&   rC   r<   rK   	enumerateZarangeshaper$   r0   r1   Z	unsqueezecossum)r#   rR   r/   r$   r%   r0   r1   r?   r@   Za_irU   r   r   r   r     sL    /




r   z
Computes the general Hamming window.

The general Hamming window is defined as follows:

.. math::
    w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    alpha (float, optional): the window coefficient. Default: 0.54.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, sym=True)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hann window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
gHzG?rO   )rP   r/   r$   r%   r0   r1   r   c             	   C   s   t | |d| g|||||dS )Nr,   rQ   r   )r#   rP   r/   r$   r%   r0   r1   r   r   r   r     s    /
r   z
Computes the minimum 4-term Blackman-Harris window according to Nuttall.

.. math::
    w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}

where :math:`z_n = \frac{2 \pi n}{M}`.
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

References::

    - A. Nuttall, "Some windows with very good sidelobe behavior,"
      IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91,
      Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506

    - Heinzel G. et al., "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
      including a comprehensive list of window functions and some new flat-top windows",
      February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf

Examples::

    >>> # Generates a symmetric Nutall window.
    >>> torch.signal.windows.general_hamming(5, sym=True)
    tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])

    >>> # Generates a periodic Nuttall window.
    >>> torch.signal.windows.general_hamming(5, sym=False)
    tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
c             	   C   s   t | g d|||||dS )N)gzD?g;%N?g1|?gC ˅?rQ   r_   rN   r   r   r   r   ;  s    7r   )'collections.abcr   mathr   typingr   r   r   r'   r   Ztorch._torch_docsr   r	   r
   __all__r   Zwindow_common_argsstrr!   intr$   r%   r+   formatr(   floatboolr0   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   s  1-,#)(*0)	('
)():("1