a
    hO                     @   s  d Z ddlmZmZmZ ddlZddlmZ ddlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddgZG d	d deZd
de de de de de
 d e_ ee ee ee ee ee ee eeeeeeeeeedddZee ee ee ee ee ee eeeeeeeeeedddZeeddee ee ee ee ee ee ee eeeeeeeeeedddZdS )z)Implementation for the RMSprop algorithm.    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTRMSproprmspropc                       sf   e Zd Zdeeeef eeeeeeee eed fdd	Z	 fd
dZ
dd ZedddZ  ZS )r   {Gz?Gz?:0yE>r   FN)paramslralphaepsweight_decaymomentumcentered
capturableforeachmaximizedifferentiablec                    s   t |tr| dkrtdd|ks4td| d|ksJtd| d|ks`td| d|ksvtd| d|kstd| t||||||||	|
|d	
}t || d S )
Nr   zTensor lr must be 1-elementg        zInvalid learning rate: zInvalid epsilon value: zInvalid momentum value: zInvalid weight_decay value: zInvalid alpha value: )
r   r   r   r   r    r   r!   r"   r#   r$   )
isinstancer   Znumel
ValueErrordictsuper__init__)selfr   r   r   r   r   r   r    r!   r"   r#   r$   defaults	__class__ A/var/www/auris/lib/python3.9/site-packages/torch/optim/rmsprop.pyr)      s2    zRMSprop.__init__c                    s   t  | | jD ]}|dd |dd |dd  |dd |dd |dd |d	 D ]h}| j|g }t|dkrft|d
 sft	|d
 }|d rtj
|t |jdntj
|t d|d
< qfqd S )Nr   r   r    Fr"   r#   r$   r!   r   stepdtypedevicer2   )r(   __setstate__param_groups
setdefaultstategetlentorchZ	is_tensorfloattensorr   r3   )r*   r8   grouppZp_stateZstep_valr,   r.   r/   r5   H   s$    

zRMSprop.__setstate__c                 C   s<  d}|d D ](}	|	j d u rq|t|	O }||	 |	j jrFtd||	j  | j|	 }
t|
dkr|d rtjdt	 |	j
dntjdt	 d|
d	< tj|	tjd
|
d< |d dkrtj|	tjd
|
d< |d rtj|	tjd
|
d< ||
d  ||
d	  |d dkr ||
d  |d r||
d  q|S )NFr   z)RMSprop does not support sparse gradientsr   r!   r.   r1   r4   r0   )Zmemory_format
square_avgr   Zmomentum_bufferr    grad_avg)gradr;   
is_complexappendZ	is_sparseRuntimeErrorr8   r:   zerosr   r3   Z
zeros_likeZpreserve_format)r*   r>   params_with_gradgradssquare_avgsmomentum_buffer_list	grad_avgsstate_stepshas_complexr?   r8   r.   r.   r/   _init_group]   sB    






zRMSprop._init_groupc                 C   s   |    d}|durBt  | }W d   n1 s80    Y  | jD ]}g }g }g }g }g }g }	| |||||||	}
t||||||	|d |d |d |d |d |d |d |d	 |d
 |d |
d qH|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r    r"   r#   r$   r!   )r   r   r   r   r   r    r"   r#   r$   r!   rM   )Z _cuda_graph_capture_health_checkr;   Zenable_gradr6   rN   r   )r*   closureZlossr>   rG   rH   rI   rK   rJ   rL   rM   r.   r.   r/   r0      sR    
$

zRMSprop.step)
r   r   r   r   r   FFNFF)N)__name__
__module____qualname__r   r   r<   r   boolr   r)   r5   rN   r   r0   __classcell__r.   r.   r,   r/   r      s6             
)3aj  Implements RMSprop algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \alpha \text{ (alpha)}, \: \gamma \text{ (lr)},
                \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\
            &\hspace{13mm}   \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},
                \: centered, \: \epsilon \text{ (epsilon)}                                       \\
            &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \:
                \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}v_t           \leftarrow   \alpha v_{t-1} + (1 - \alpha) g^2_t
                \hspace{8mm}                                                                     \\
            &\hspace{5mm} \tilde{v_t} \leftarrow v_t                                             \\
            &\hspace{5mm}if \: centered                                                          \\
            &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t            \\
            &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} -  \big(g^{ave}_{t} \big)^2        \\
            &\hspace{5mm}if \: \mu > 0                                                           \\
            &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} +
                g_t/ \big(\sqrt{\tilde{v_t}} +  \epsilon \big)                                   \\
            &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t                \\
            &\hspace{5mm} else                                                                   \\
            &\hspace{10mm}\theta_t      \leftarrow   \theta_{t-1} -
                \gamma  g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big)  \hspace{3mm}              \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to
    `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton.
    and centered version `Generating Sequences
    With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
    The implementation here takes the square root of the gradient average before
    adding epsilon (note that TensorFlow interchanges these two operations). The effective
    learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma`
    is the scheduled learning rate and :math:`v` is the weighted moving average
    of the squared gradient.
    z
    Args:
        a0  
        lr (float, Tensor, optional): learning rate (default: 1e-2)
        alpha (float, optional): smoothing constant (default: 0.99)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        momentum (float, optional): momentum factor (default: 0)
        centered (bool, optional) : if ``True``, compute the centered RMSProp,
            the gradient is normalized by an estimation of its variance
        z	
        z

    )r   rH   rI   rK   rJ   rL   r   r   r   r   r   r    r#   r$   r!   rM   c       
         C   s  t j st|}t| D ]\}}|| }t j sl|rlt }|jj	|jj	kr\|jj	|v slJ d| d|| }|s||n| }|| }|d7 }|	dkr|j
||	d}t |}|rt |}t |}t |}||j||d| d |r2|| }|rt |}||d|  |j||dd }n| }|rL|
|}n
||}|
dkr|| }|rxt |}||
|| |j|| d q|j||| d qd S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   r   value)r;   jitis_scriptingr   	enumeratecompileris_compilingr   r3   typeaddrC   Zview_as_realZmul_Zaddcmul_Zlerp_ZaddcmulZsqrt_sqrtZadd_Zaddcdiv_)r   rH   rI   rK   rJ   rL   r   r   r   r   r   r    r#   r$   r!   rM   iparamr0   capturable_supported_devicesrB   r@   Zis_complex_paramrA   avgbufr.   r.   r/   _single_tensor_rmsprop	  sR    










rh   c       
   !         s  t | dkrd S |rJ dtj s\|r\t  t fddt| |D s\J d  dt|}t	| |||||g}|
 D ]n\\}}}}}}}ttt |}ttt |}ttt |}ttt |}|r,||g}|
dkrttt |}|| |rttt |}|| t|g|R   |r<t|}tj sp|d jrptj|tjddd	dd
 nt|d |	dkr|rtj|||	d
 ntj|||	d
}t|| tj|||d| d |r ttt |}t||d|  tj|||dd}t| t|| nt|}t|| |
dkrttt |}t||
 t||| |rt|tjrt|| } t||  ntj||| d
 q|rt|tjrt||  t||| qtj|||| d qd S )Nr   z#_foreach ops don't support autogradc                 3   s.   | ]&\}}|j j|j jko$|j j v V  qd S N)r3   r`   ).0r?   r0   re   r.   r/   	<genexpr>p  s   z(_multi_tensor_rmsprop.<locals>.<genexpr>rU   rV   g      ?cpu)r3   rW   r   rX   rZ   )r:   r;   r^   r_   r   allzipr   r   Z"_group_tensors_by_device_and_dtypevaluesr   listr   rD   r   Z_foreach_negZis_cpuZ_foreach_add_r=   Z_foreach_addZ_foreach_mul_Z_foreach_addcmul_Z_foreach_lerp_Z_foreach_addcmulZ_foreach_sqrt_Z_foreach_sqrtZ_foreach_addcdiv_r%   Z_foreach_mulZ_foreach_div_)!r   rH   rI   rK   rJ   rL   r   r   r   r   r   r    r#   r$   r!   rM   Zgrouped_tensorsZgrouped_params_Zgrouped_grads_Zgrouped_square_avgs_Zgrouped_grad_avgs_Zgrouped_momentum_buffer_list_Zgrouped_state_steps__Zgrouped_paramsZgrouped_gradsZgrouped_square_avgsZgrouped_state_stepsZstate_and_gradsZgrouped_momentum_buffer_listZgrouped_grad_avgsrf   Zmomentum_lrr.   rk   r/   _multi_tensor_rmspropU  s    








rs   )Zsingle_tensor_fnF)r   rH   rI   rK   rJ   rL   r"   r#   r$   r!   rM   r   r   r   r   r   r    c                C   s   t j s$tdd |D s$td|du r>t| |dd\}}|rTt j rTtd|rht j sht}nt	}|| |||||||||||||	||
d dS )	ztFunctional API that performs rmsprop algorithm computation.

    See :class:`~torch.optim.RMSProp` for details.
    c                 s   s   | ]}t |tjV  qd S ri   )r%   r;   r   )rj   tr.   r.   r/   rl     s   zrmsprop.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)
r   r   r   r   r   r    r#   r!   r$   rM   )
r;   r^   r_   rn   rE   r   r[   r\   rs   rh   )r   rH   rI   rK   rJ   rL   r"   r#   r$   r!   rM   r   r   r   r   r   r    rr   funcr.   r.   r/   r     sB    
)NFFFF)__doc__typingr   r   r   r;   r   Z	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   rq   r<   rS   rh   rs   r   r.   r.   r.   r/   <module>   s   @ ,,BM 
     