a
    h,                     @   s   d dl Z d dlmZ d dlZd dlmZ d dlmZmZ d dl	m
Z
mZ ddlmZ ddlmZ g d	ZG d
d deZG dd deZG dd deZG dd deZG dd deeZdS )    N)Any)Tensor)
functionalinit)	ParameterUninitializedParameter   )LazyModuleMixin)Module)BilinearIdentity
LazyLinearLinearc                       s:   e Zd ZdZeedd fddZeedddZ  ZS )	r   a  A placeholder identity operator that is argument-insensitive.

    Args:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Examples::

        >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 20])

    N)argskwargsreturnc                    s   t    d S Nsuper__init__)selfr   r   	__class__ E/var/www/auris/lib/python3.9/site-packages/torch/nn/modules/linear.pyr   +   s    zIdentity.__init__inputr   c                 C   s   |S r   r   r   r   r   r   r   forward.   s    zIdentity.forward)	__name__
__module____qualname____doc__r   r   r   r   __classcell__r   r   r   r   r      s   r   c                       s|   e Zd ZU dZddgZeed< eed< eed< deeedd fdd	Z	dd
ddZ
eedddZed
ddZ  ZS )r   aC  Applies an affine linear transformation to the incoming data: :math:`y = xA^T + b`.

    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.

    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(*, H_\text{in})` where :math:`*` means any number of
          dimensions including none and :math:`H_\text{in} = \text{in\_features}`.
        - Output: :math:`(*, H_\text{out})` where all but the last dimension
          are the same shape as the input and :math:`H_\text{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    in_featuresout_featuresweightTNr$   r%   biasr   c                    sr   ||d}t    || _|| _ttj||ffi || _|rZttj|fi || _n| 	dd  | 
  d S )Ndevicedtyper(   )r   r   r$   r%   r   torchemptyr&   r(   register_parameterreset_parameters)r   r$   r%   r(   r*   r+   factory_kwargsr   r   r   r   ]   s    

zLinear.__init__r   c                 C   s`   t j| jtdd | jd ur\t | j\}}|dkrFdt| nd}t | j| | d S )N   )ar   r   )r   Zkaiming_uniform_r&   mathsqrtr(   Z_calculate_fan_in_and_fan_outuniform_)r   Zfan_in_boundr   r   r   r/   r   s
    
zLinear.reset_parametersr   c                 C   s   t || j| jS r   )FZlinearr&   r(   r   r   r   r   r   |   s    zLinear.forwardc                 C   s    d| j  d| j d| jd u S )Nzin_features=, out_features=, bias=)r$   r%   r(   r   r   r   r   
extra_repr   s    zLinear.extra_repr)TNNr   r    r!   r"   Z__constants__int__annotations__r   boolr   r/   r   strr=   r#   r   r   r   r   r   2   s"   
%   
r   c                       s*   e Zd Zdeeedd fddZ  ZS )NonDynamicallyQuantizableLinearTNr'   c                    s   t  j|||||d d S )N)r(   r*   r+   r   )r   r$   r%   r(   r*   r+   r   r   r   r      s    
z(NonDynamicallyQuantizableLinear.__init__)TNN)r   r    r!   r?   rA   r   r#   r   r   r   r   rC      s      rC   c                       s   e Zd ZU dZg dZeed< eed< eed< eed< deeeedd	 fd
dZ	ddddZ
eeedddZedddZ  ZS )r   a  Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b`.

    Args:
        in1_features: size of each first input sample, must be > 0
        in2_features: size of each second input sample, must be > 0
        out_features: size of each output sample, must be > 0
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input1: :math:`(*, H_\text{in1})` where :math:`H_\text{in1}=\text{in1\_features}` and
          :math:`*` means any number of additional dimensions including none. All but the last dimension
          of the inputs should be the same.
        - Input2: :math:`(*, H_\text{in2})` where :math:`H_\text{in2}=\text{in2\_features}`.
        - Output: :math:`(*, H_\text{out})` where :math:`H_\text{out}=\text{out\_features}`
          and all but the last dimension are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in1\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
                :math:`k = \frac{1}{\text{in1\_features}}`

    Examples::

        >>> m = nn.Bilinear(20, 30, 40)
        >>> input1 = torch.randn(128, 20)
        >>> input2 = torch.randn(128, 30)
        >>> output = m(input1, input2)
        >>> print(output.size())
        torch.Size([128, 40])
    )in1_featuresin2_featuresr%   rD   rE   r%   r&   TN)rD   rE   r%   r(   r   c                    s   ||d}t    |dkr*td| || _|| _|| _ttj|||ffi || _	|rxttj|fi || _
n| dd  |   d S )Nr)   r   z"in1_features must be > 0, but got r(   )r   r   
ValueErrorrD   rE   r%   r   r,   r-   r&   r(   r.   r/   )r   rD   rE   r%   r(   r*   r+   r0   r   r   r   r      s    	

zBilinear.__init__r1   c                 C   sH   dt | jd }t| j| | | jd urDt| j| | d S )Nr   )r4   r5   r&   sizer   r6   r(   )r   r8   r   r   r   r/      s    
zBilinear.reset_parameters)input1input2r   c                 C   s   t ||| j| jS r   )r9   Zbilinearr&   r(   )r   rH   rI   r   r   r   r      s    zBilinear.forwardc              	   C   s(   d| j  d| j d| j d| jd u S )Nzin1_features=z, in2_features=r:   r;   )rD   rE   r%   r(   r<   r   r   r   r=      s    zBilinear.extra_repr)TNNr>   r   r   r   r   r      s&   
%   r   c                       sb   e Zd ZU dZeZeed< eed< dee	dd fddZ
dd	 fd
dZdd	ddZ  ZS )r   a  A :class:`torch.nn.Linear` module where `in_features` is inferred.

    In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
    class. They will be initialized after the first call to ``forward`` is done and the
    module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
    of the :class:`Linear` is inferred from the ``input.shape[-1]``.

    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
    on lazy modules and their limitations.

    Args:
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`


    r&   r(   TN)r%   r(   r   c                    sH   ||d}t  ddd tf i || _|| _|rDtf i || _d S )Nr)   r   F)r   r   r   r&   r%   r(   )r   r%   r(   r*   r+   r0   r   r   r   r     s    
zLazyLinear.__init__r1   c                    s    |   s| jdkrt   d S )Nr   )has_uninitialized_paramsr$   r   r/   r<   r   r   r   r/     s    zLazyLinear.reset_parametersc                 C   s   |   rrt R |jd | _| j| j| jf | jd urL| j| jf | 	  W d    n1 sh0    Y  | jdkr|jd | jjd ksJ d|jd  d| jjd  |jd | _d S )Nr   z%The in_features inferred from input: z/ is not equal to in_features from self.weight: )
rJ   r,   Zno_gradshaper$   r&   Zmaterializer%   r(   r/   r   r   r   r   initialize_parameters  s    

&

z LazyLinear.initialize_parameters)TNN)r   r    r!   r"   r   Zcls_to_becomer   r@   r?   rA   r   r/   rM   r#   r   r   r   r   r      s   
 r   )r4   typingr   r,   r   Ztorch.nnr   r9   r   Ztorch.nn.parameterr   r   Zlazyr	   moduler
   __all__r   r   rC   r   r   r   r   r   r   <module>   s   VV