a
    h                     @   sj   U d dl mZ d dlZd dlm  mZ d dlmZ d dlm	Z	 g Z
ee ed< ejjG dd dZdS )    )OptionalN)Tensor)2_scripted_functional_optimizer_deprecation_warning__all__c                   @   sN   e Zd Zdee eeeeeeeeeeeeddd	Zeee  d
ddZ	dS )_FunctionalAdagrad{Gz?              ?绽|=TF)paramslrlr_decayweight_decayinitial_accumulator_valuewarmup_lr_multiplierwarmup_num_itersepscoalesce_gradforeachfusedmaximize_allow_empty_param_listc                 C   s   t dd |||||||d| _|	| _|
| _|| _|| _tjt	tj
t	ttj
f f i | _t|dkrt|sttdd|i| _| jd D ]$}t|j|tdd| j|< qd S )	N   )
stacklevel)r   r   r   r   r   r   r   r   z%optimizer got an empty parameter listr   r   )sumstep)r   defaultsr   r   r   r   torchjitZannotatedictr   strstatelen
ValueErrorparam_groupZ	full_likedataZtensor)selfr   r   r   r   r   r   r   r   r   r   r   r   r   p r(   X/var/www/auris/lib/python3.9/site-packages/torch/distributed/optim/functional_adagrad.py__init__   s*    
	$
z_FunctionalAdagrad.__init__)	gradientsc                 C   s@  | j d }g }g }g }g }t|t|krPtddt| d dt|  d\}}t| j d |D ]b\}	}
|
d urh||
jO }|t|	O }||	 ||
 | j|	 }||d  ||d  qht	 V t
j||||| jd	 | jd
 | jd | jd || j| j|| jd d d W d    n1 s20    Y  d S )Nr   zEthe gradients passed in does not equal to the size of the parameters!zParams length: z. zGradients length: )FFr   r   r   r   r   r   )r   r   r   r   has_sparse_gradr   r   has_complexr   Z
grad_scaleZ	found_inf)r$   r"   r#   zipZ	is_sparser   Z
is_complexappendr!   Zno_gradFZadagradr   r   r   r   )r&   r+   r   Zparams_with_gradZgradsZ
state_sumsZstate_stepsr,   r-   paramZgradientr!   r(   r(   r)   r   I   sR    





z_FunctionalAdagrad.stepN)r   r   r   r   r	   r   r
   TFFFF)
__name__
__module____qualname__listr   floatboolr*   r   r   r(   r(   r(   r)   r      s8               /r   )typingr   r   Ztorch.optim._functionalZoptimZ_functionalr0   r   Z,torch.distributed.optim._deprecation_warningr   r   r5   r    __annotations__r   scriptr   r(   r(   r(   r)   <module>   s   