a
    khی                  i   @   s#  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZmZmZ d dlmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z,m-Z- d dl.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dl5m6Z6 d dl7m8Z8 d dl9m:Z:m;Z;m<Z<m=Z=m>Z> d dl9m?Z? d dlm@Z@mAZAmBZBmCZCmDZDmEZE d dlFmGZGmHZHmIZI d dlJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZT ddlUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_m`Z` edZaeadu Zbdd Zcdd  Zdefd!d"Zed#d$ Zfd%d& Zgd'ed(fd)ed)fd*ed+fd,ed,fd-ed.fd/ed.fd0ed1fd2ed3fd4ed5fd6ed7fd8ed9fd:ed;fd<ed<fd=ed=fd>ed?fd@edAfdBedCfdDedEfdFedGfdHedIfdJedJfdKedKfdLedLfdMedMfdNedOfdPedOfdQedRfdSedTfdUedVfdWedXfdYedYfdZedZfd[ed[fd\ed\fd]edRfd^edRfd_ed`fdaedbfdceddfdeedffdgedhfdiedjfdkedlfdmednfdoedpfdqedrfdsedtfduedvfdwedxfdyedzfd{ed|fd}ed~fdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedfdedăfdedƃfdedȃfdedȃfded˃fded̓fdedσfdedσfded҃fdedԃfdedփfdedփfdedكfdedۃfggZhddddeYddfdeXddfdeXd dfdeYddfdeYd dfd5eKfddeK fdeXeYdeKdfdeP fdefdeNeO fdeYddfdeNeO fdeNeO fdeNeO fdeXeNeO eN fdeYeXeKeLeMfdeXeYed<eOeYeNedfgZidddddddeK fddeK d fdeP fdeNeO fddeNeO fdeNeO fdeNeO fdeOfdeKeL eM fgZjdeNeO fdeNeO fdeNeO fdeYdeZddfd eYeYdeZddeLfdeYeYdeZdddfdeYdeZddfdeYeNeO eZePdfdeYdeZddfg	ZkdeNeO fdeNeO fdeNeO fdeddfd eLd fddeddfdeNeO eP fdeddfg	Zlde@eKeLfd	eAeKeLfd
eBeKeLfdeDeKeLfdeCeKeLfdeEeKeLfdeCeKeLfdeEeKeLfd
eeKeLfdeeKeLfdeeKeLfdeeKeLfd	eeKeLfde@eNd eOd  ePd fgZmdeKd fdeZeKeYdeZddfdeKeXdd fdede]eKeL  fdeXeZdd eYdeZdd fgZndeKd fde+eKfdeKd fdede]eKeL  fdgZode6eYdeKeKfde6eYdeKeKfde6eYdeKeVfde6eYdeKd eL eKfde6eYdeXeKeNeKfde6eYddeNfd e6eYddeKd dffd!e6eYdeKeKd dffd"e6eYdeKeKeNeOffd#e6eYdeKeKeNeOffd$e6eYdeKeKeNeOffd%e6eYdeKeKeNeOffd&e6eYdeKeKeNeOffd'e6eYdeKeKeNeOffd(e6eWeMeMeWeNeWeOffd)e6eYdeXeXeNeOePeKfd*e6eYdeYdeeMdeMfd+e6eYdeYdeZeMdeMfd,e6eYdeYdeeKdeKfd-e6eYdeXeYdeZeNdeYdeeOdeKfd.e6eYdeXeYdeZeKddeKfgZpde6eKeKfde6eKeKfde6eKeVfde6eKd eL eKfde6eKeN eKfde6deNfd e6deKd dffd!e6eKeKd dffd"e6eKeKeNeOffd#e6eKeKeNeOffd$e6eKeKeNeOffd%e6eKeKeNeOffd&e6eKeKeNeOffd'e6eKeKeNeOffd(e6eWeMeMeWeNeWeOffd)e6eNeO eP eKfd*e6eeMdeMfd+e6deeMd eMfd,e6deK eKfd-e6deN deO  eKfd/e6deN deO  eKfd.e6deK d eKfgZqd0eeKeKfd1eeKeRfd2ee4eKeKfd3eeWeKeKfd4eed5eKeKfgZrd6e3eVfd7e3eVfd8e/eNfd9eYe3eNe0eOfd:e3e0eVfd;e3e0eVfd<e1eKe2eL fd=eYe3eKeZddfgZsd>e8eNeKdd?d@fdAe8eNeKdd?d@fdBe8eNeKdd?d@fdCe8eNeKdd?d@fdDe8eNeKdd?d@fdEe8eNeKddFd@fdGe8eNeKddHd@fdIe8eNeKddFd@fdJe8eNeKddHd@fdKe8eYdeZeKdeKefg
ZtdKe8deK eKefgZudLe+eKfdMe+eXeKeOfdNeZe3eKeZddfdOe*e3eKeLfdPe*e3eKeVfdQe[eYdReZdSdfgZvdLe+eKfdMe+eKeO fdNe*e3eKdfdOe*e3eKeLfdPe*e3eKeVfdQe+dfgZwdTe^eKfdUe^dVfdWe^eVfdXe^eXeKdfdYe^e^eKfdZe^e^e^eKfd[eYe^de^dfgZxdTeeKfdUedVfdWeeVfdXeeKd fdYeeeKfdZeeeeKfd[eded fd\ed]ed] fgZyd^e	eYdePeSddffd_e	eYdePeSddffd`e	eYdePeSddffdae	eYdePeSddffdbe	eYdeSd eSddcffdde	eYdeYdeZe^eTdeTd effgZzd^e	ePeSddffd_e	ePeSddffd`e	ePeSddffdae	ePeSddffdbe	eSd eSddcffdde	deeT eTd effgZ{deeeKeNeOePffdfeeKeNeOePffdgeeKeNeOePffdheeKeNeOePffgZ|dieWeKfdjeWeKeLfdkeWeKeLeMfdledmeKfdnedoeKeL fdped.ed(ed)fgZ}dqe]eKfdre]e!eKfdse]eKe]eL fdte]e]eKe]eL fdue(eKfdve'eKfdwe_eKfdxe_eKfdyeeeKdcfdzeeeKfd{eeeKeL fd|eeeKfd}eeeKeL fd~eeeKdfdeeeKeNfdeeeKdfdeeeKeZeNdfdeeeKdfdeeeKeNfde\eMfde\e\eMfde\eXeKeLfde\eKe\eL fdeceNeOfdeceNeOePeQ eKeL fdedeNeOfdedeNeOePeQ eKeL fdeGd5fdeHd5fdeIeGd5eHdfgZ~dqe!eKfdre!e!eKfdse!eKe!eL fdte!e!eKe!eL fdue(eKfdve'eKfdwe$eKfdxe$eKfdye%eKdcfdze%eKfd{e%eKeL fd|e%eKfd}e%eKeL fd~e%eKdfde%eKeNfde%eKdfde%eKeZeNdfde%eKdfde%eKeNfde"eMfde"e"eMfde"eKeL fde"eKe"eL fde,eNeOfde,eNeOePeQ eKeL fde-eNeOfde-eNeOePeQ eKeL fdeGd5fdeHd5fdeIeGd5eHdfgZdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfdeYeNeOfgZde`eTeSfde`eTeSfde`eTeSfde`eTd fdeZeKe`eTeSfgZdeeTeSfdeeTeSfdeeTeSfdeeTd fdeKeeTeS fgZdeYeXeKeLeMfdeYeXeKeLeMfdeYeXeKeLeMfgZdeZe?dfde]e?fde\e?fdeXe?e?fdeXe?e? fdeYe?e?fdeYe?eZe?dfdeYeXde?eZe]eXde?dfgZde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfde:eNeOgeKeLggfdefe:eKeLgeNeOgge:eNeOgeKeLggfdegde:eNeOgeKeLggfdefe:eKeLgeNeOggegde:eNeOgeKeLggfdegege:eNeOePgeKeLeMgeNeOePgge:eKeLeMgeNeOePgeNeOePgge:eNeOePgeKeLeMgeKeLeMggfdege:eNeOgeKeLggeZddfdeZe:eNeOgeKeLggdfdeZe:eNeOgeKeLggdfde=e:eNeOgeKeLggfde=e:eNeOgeKeLggfde=e:eNeOgeKeLggfde=e:ddgddggfdegefe:ddgddgge=e:ddgddgge:dgd ggfdeZefe:eNeOgeKeLgge:eKeLgeNeOggdfde=efe:eNeOgeKeLgge:eKeLgeNeOggfde\efe:e?dgddgge:e?dgddggfgZde:eNeOgeKeLgg fdƐdǐdȐdɐdege:eNeOgeKeLggeZe:eNeOgeKeLgg dfdege:eNeOgeKeLggeZe:eNeOgeKeLgg dfdege:eNeOgeKeLggeZe:eNeOgeKeLgg dfde:e? de? ge?dggfde:e? e?gde? dggfde>e:e?de? ge? dggfde:ddgddggfde:de? dSgddggfde:de? dSgddggfde:de? dgdSdggfde:de? dSgddggfde:de? dSgddggfde:de? dgdSdggfde:de? dSgddggfde=efe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfdefe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfdefe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfdefe:e?dgddgge:e?dgddggfde=efe:e?dgddgge:e?dgddggfdefe:e?dgddgge:e?dgddgg fde>efe:e?dgddgge:e?dgddggfde:dԐdgdde? ggfde=efe:e?dgddgge:e?dgddggfde:de? dSgddggfg"Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd d Zdd Zdd Zedd Zdd	 Zed
d Zdd Zdd Zdd Zdd ZdS (      )XFAIL)parse_latex_lark)import_module)Product)Sum)
DerivativeFunction)EooRational)Powevaluate)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrtMinMax)asincoscscsecsintan)Integral)Limit)MatrixMatAddMatMul	TransposeTrace)I)EqNeLtLeGtGe)BraKetInnerProduct)
xyzabcdtkn   )thetaf_Add_Mul_Pow_Sqrt
_Conjugate_Abs
_factorial_exp	_binomiallarkNc                  G   s   t | ddiS Nr   F)r   args rR   Q/var/www/auris/lib/python3.9/site-packages/sympy/parsing/tests/test_latex_lark.py_Min$   s    rT   c                  G   s   t | ddiS rO   )r    rP   rR   rR   rS   _Max(   s    rU   c                 C   s&   |t krt| ddS t| |ddS d S NFr   )r	   r   r;   r<   rR   rR   rS   _log,   s    rX   c                 C   s   t | |ddS rV   )r*   rW   rR   rR   rS   _MatAdd3   s    rY   c                 C   s   t | |ddS rV   )r+   rW   rR   rR   rS   _MatMul7   s    rZ   Zx_0zx_{0}zx_{1}Zx_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zy''_1zy''_{1}zy_1''zy_{1}''z
\mathit{x}r8   z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldza'za''z\alpha'zalpha'z\alpha''zalpha''Za_bza_{b}za_b'za_{b}'za'_bza'_{b}za'_b'za'_{b}'za_{b'}za_{b'}'za'_{b'}za'_{b'}'z\mathit{foo}'zfoo'z\mathit{foo'}z\mathit{foo'}'zfoo''za_b''za_{b}''za''_bza''_{b}za''_b'''z
a''_{b}'''za_{b''}z	a_{b''}''z	a''_{b''}za''_{b''}'''z\mathit{foo}''z\mathit{foo''}z\mathit{foo''}'''zfoo'''''za_\alphaz	a_{alpha}z	a_\alpha'z
a_{alpha}'z	a'_\alphaz
a'_{alpha}z
a'_\alpha'za'_{alpha}'za_{\alpha'}z
a_{alpha'}za_{\alpha'}'za_{alpha'}'za'_{\alpha'}za'_{alpha'}za'_{\alpha'}'za'_{alpha'}'z
a_\alpha''za_{alpha}''z
a''_\alphaza''_{alpha}za''_\alpha'''za''_{alpha}'''za_{\alpha''}za_{alpha''}za_{\alpha''}''za_{alpha''}''za''_{\alpha''}za''_{alpha''}za''_{\alpha''}'''za''_{alpha''}'''z\alpha_bz	alpha_{b}z	\alpha_b'z
alpha_{b}'z	\alpha'_bz
alpha'_{b}z
\alpha'_b'zalpha'_{b}'z\alpha_{b'}z
alpha_{b'}z\alpha_{b'}'zalpha_{b'}'z\alpha'_{b'}zalpha'_{b'}z\alpha'_{b'}'zalpha'_{b'}'z
\alpha_b''zalpha_{b}''z
\alpha''_bzalpha''_{b}z\alpha''_b'''zalpha''_{b}'''z\alpha_{b''}zalpha_{b''}z\alpha_{b''}''zalpha_{b''}''z\alpha''_{b''}zalpha''_{b''}z\alpha''_{b''}'''zalpha''_{b''}'''z\alpha_\betazalpha_{beta}z\alpha_{\beta}z\alpha_{\beta'}zalpha_{beta'}z\alpha_{\beta''}zalpha_{beta''}z\alpha'_\betazalpha'_{beta}z\alpha'_{\beta}z\alpha'_{\beta'}zalpha'_{beta'}z\alpha'_{\beta''}zalpha'_{beta''}z\alpha''_\betazalpha''_{beta}z\alpha''_{\beta}z\alpha''_{\beta'}zalpha''_{beta'}z\alpha''_{\beta''}zalpha''_{beta''}z\alpha_\beta'zalpha_{beta}'z\alpha_{\beta}'z\alpha_{\beta'}'zalpha_{beta'}'z\alpha_{\beta''}'zalpha_{beta''}'z\alpha'_\beta'zalpha'_{beta}'z\alpha'_{\beta}'z\alpha'_{\beta'}'zalpha'_{beta'}'z\alpha'_{\beta''}'zalpha'_{beta''}'z\alpha''_\beta'zalpha''_{beta}'z\alpha''_{\beta}'z\alpha''_{\beta'}'zalpha''_{beta'}'z\alpha''_{\beta''}'zalpha''_{beta''}'z\alpha_\beta''zalpha_{beta}''z\alpha_{\beta}''z\alpha_{\beta'}''zalpha_{beta'}''z\alpha_{\beta''}''zalpha_{beta''}''z\alpha'_\beta''zalpha'_{beta}''z\alpha'_{\beta}''z\alpha'_{\beta'}''zalpha'_{beta'}''z\alpha'_{\beta''}''zalpha'_{beta''}''z\alpha''_\beta''zalpha''_{beta}''z\alpha''_{\beta}''z\alpha''_{\beta'}''zalpha''_{beta'}''z\alpha''_{\beta''}''zalpha''_{beta''}'')0r   )1rB   )z-3.14gQ	(-7.13)(1.5)gQg      ?1+10+11*2   0*1Z2xz3x - 1   z-cz\inftyz	a \cdot b1 \times 2 za / bza \div bza + bz	a + b - az	(x + y) zza'b+ab'zb')r_   gp=
c%)r`   rc   )ra   rB   )rb   rc   )rd   r   )rg   rc   z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12y	\frac1234"   z	\frac2{3}z\frac{a + b}{c}z\frac{7}{3}   )rh      zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yza^2 + b^2 = c^2zx^2zx^\frac{1}{2}z	x^{3 + 1}z
\pi^{|xy|}pi	5^0 - 4^0      )rm   r   z	\int x dxz\int x \, dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz\int \frac{1}{x} + 1 dxz!\int \frac{1}{a} - \frac{1}{b} dxz\frac{d}{dx} xz\frac{d}{dt} xz\frac{d}{dx} ( \tan x )z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}rC   z\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z(\csc x)(\sec y)z\frac{\sin{x}}2z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\lim_{x \to \infty} \frac{1}{x}z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!z24! \times 24!   z\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''zh_{\theta}(x_0, x_1)z|x|z||x||z|x||y|z||x||y||z\lfloor x \rfloorz\lceil x \rceilz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz\log_2 xz\log_a xz\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\min(a, b)z\min(a, b, c - d, xy)z
\max(a, b)z\max(a, b, c - d, xy)z\langle x |z| x \ranglez\langle x | y \rangler9   za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\imaginaryunit^2z|\imaginaryunit|z\overline{\imaginaryunit}z\imaginaryunit+\imaginaryunitz\imaginaryunit-\imaginaryunitz\imaginaryunit*\imaginaryunitz\imaginaryunit/\imaginaryunitz%(1+\imaginaryunit)/|1+\imaginaryunit|z)\begin{pmatrix}a & b \\x & y\end{pmatrix}z+\begin{pmatrix}a & b \\x & y\\\end{pmatrix}z)\begin{bmatrix}a & b \\x & y\end{bmatrix}z4\left(\begin{matrix}a & b \\x & y\end{matrix}\right)z4\left[\begin{matrix}a & b \\x & y\end{matrix}\right]z6\left[\begin{array}{cc}a & b \\x & y\end{array}\right]z6\left(\begin{array}{cc}a & b \\x & y\end{array}\right)z<\left( { \begin{array}{cc}a & b \\x & y\end{array} } \right)z*+\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}+\begin{pmatrix}a & b \\x & y\end{pmatrix}z*-\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}-\begin{pmatrix}a & b \\x & y\end{pmatrix}z\begin{pmatrix}a & b & c \\x & y & z \\a & b & c \end{pmatrix}*\begin{pmatrix}x & y & z \\a & b & c \\a & b & c \end{pmatrix}*\begin{pmatrix}a & b & c \\x & y & z \\x & y & z \end{pmatrix}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}/2z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^2z.\begin{pmatrix}a & b \\x & y\end{pmatrix}^{-1}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^Tz-\begin{pmatrix}a & b \\x & y\end{pmatrix}^{T}z4\begin{pmatrix}a & b \\x & y\end{pmatrix}^\mathit{T}z+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^Tzx(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T)*\begin{bmatrix}1\\0\end{bmatrix}zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^2zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^Tzn\overline{\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}}zJ\det\left(\left[   { \begin{array}{cc}a&b\\x&y\end{array} } \right]\right))z)\det \begin{pmatrix}1&2\\3&4\end{pmatrix})z*\det{\begin{pmatrix}1&2\\3&4\end{pmatrix}}ry   )z*\det(\begin{pmatrix}1&2\\3&4\end{pmatrix})ry   )z5\det\left(\begin{pmatrix}1&2\\3&4\end{pmatrix}\right)ry   zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/\begin{vmatrix}a & b \\x & y\end{vmatrix}zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/|\begin{matrix}a & b \\x & y\end{matrix}|za\frac{\begin{pmatrix}a & b \\x & y\end{pmatrix}}{| { \begin{matrix}a & b \\x & y\end{matrix} } |}z^\overline{\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}}zU\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}^Hz[\trace(\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix})z4\adjugate(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix})ry   zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\ast   zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast}zp(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast\ast}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{*}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{**}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{***}zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\primezn(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime}zz(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime\prime}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{''}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'''}zf(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'zg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})''zh(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'''zi\det(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zk\trace(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zn\adjugate(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})izg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Tzg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Hc               	   C   sh   ddh} t tD ]R\}\}}|| v r&qtd$ t||ksDJ |W d    q1 sX0    Y  qd S )Nrt   rj   F)	enumerateSYMBOL_EXPRESSION_PAIRSr   r   Zexpected_failuresi	latex_str
sympy_exprrR   rR   rS   test_symbol_expressions  s    
r   c               	   C   s   dh} t tD ]R\}\}}|| v r$qtd$ t||ksBJ |W d    q1 sV0    Y  qt tD ]*\}\}}|| v rqjt||ksjJ |qjd S )N   F)r}   #UNEVALUATED_SIMPLE_EXPRESSION_PAIRSr   r   !EVALUATED_SIMPLE_EXPRESSION_PAIRSr   rR   rR   rS   test_simple_expressions  s    
4r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S NF)%UNEVALUATED_FRACTION_EXPRESSION_PAIRSr   r   #EVALUATED_FRACTION_EXPRESSION_PAIRSr   r   rR   rR   rS   test_fraction_expressions  s
    
4r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   )RELATION_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_relation_expressions  s    
r   c               	   C   s   dh} t tD ]R\}\}}|| v r$qtd$ t||ksBJ |W d    q1 sV0    Y  qt tD ]*\}\}}|| v rqjt||ksjJ |qjd S Nre   F)r}   "UNEVALUATED_POWER_EXPRESSION_PAIRSr   r    EVALUATED_POWER_EXPRESSION_PAIRSr   rR   rR   rS   test_power_expressions  s    
4r   c               	   C   s   dh} t tD ]R\}\}}|| v r$qtd$ t||ksBJ |W d    q1 sV0    Y  qt tD ]*\}\}}|| v rqjt||ksjJ |qjd S )N   F)r}   %UNEVALUATED_INTEGRAL_EXPRESSION_PAIRSr   r   #EVALUATED_INTEGRAL_EXPRESSION_PAIRSr   rR   rR   rS   test_integral_expressions  s    
4r   c               	   C   s   ddh} t tD ]R\}\}}|| v r&qtd$ t||ksDJ |W d    q1 sX0    Y  qt tD ]*\}\}}|| v rqlt||kslJ |qld S )Nre   ro   F)r}   DERIVATIVE_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_derivative_expressions  s    
4r   c               	   C   sf   dh} t tD ]R\}\}}|| v r$qtd$ t||ksBJ |W d    q1 sV0    Y  qd S r   )r}   TRIGONOMETRIC_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_trigonometric_expressions  s    
r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   )"UNEVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_limit_expressions  s    
r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   )!UNEVALUATED_SQRT_EXPRESSION_PAIRSr   r   EVALUATED_SQRT_EXPRESSION_PAIRSr   rR   rR   rS   test_square_root_expressions  s
    
4r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   )&UNEVALUATED_FACTORIAL_EXPRESSION_PAIRSr   r   $EVALUATED_FACTORIAL_EXPRESSION_PAIRSr   rR   rR   rS   test_factorial_expressions  s
    
4r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   ) UNEVALUATED_SUM_EXPRESSION_PAIRSr   r   EVALUATED_SUM_EXPRESSION_PAIRSr   rR   rR   rS   test_sum_expressions#  s
    
4r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   )$UNEVALUATED_PRODUCT_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_product_expressions,  s    
r   c               	   C   sh   h d} t tD ]R\}\}}|| v r&qtd$ t||ksDJ |W d    q1 sX0    Y  qd S )N>   r   re   ro   F)r}   !APPLIED_FUNCTION_EXPRESSION_PAIRSr   r   r   rR   rR   rS   !test_applied_function_expressions1  s    
r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   ),UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   r   *EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   rR   rR   rS    test_common_function_expressions<  s
    
4r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   ) SPACING_RELATED_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_spacingF  s    
r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   )%UNEVALUATED_BINOMIAL_EXPRESSION_PAIRSr   r   #EVALUATED_BINOMIAL_EXPRESSION_PAIRSr   rR   rR   rS   test_binomial_expressionsM  s
    
4r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   )MISCELLANEOUS_EXPRESSION_PAIRSr   r   r   rR   rR   rS   test_miscellaneous_expressionsV  s    
r   c               	   C   sN   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qd S r   )3UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRSr   r   r   rR   rR   rS   'test_literal_complex_number_expressions\  s    
r   c               	   C   sp   t D ]D\} }td$ t| |ks*J | W d    q1 s>0    Y  qtD ]\} }t| |ksNJ | qNd S r   )#UNEVALUATED_MATRIX_EXPRESSION_PAIRSr   r   !EVALUATED_MATRIX_EXPRESSION_PAIRSr   rR   rR   rS   test_matrix_expressionsb  s
    
4r   )Zsympy.testing.pytestr   Zsympy.parsing.latex.larkr   Zsympy.externalr   Zsympy.concrete.productsr   Zsympy.concrete.summationsr   Zsympy.core.functionr   r   Zsympy.core.numbersr	   r
   r   Zsympy.core.powerr   Zsympy.core.parametersr   Zsympy.core.relationalr   r   r   r   r   Zsympy.core.symbolr   Z(sympy.functions.combinatorial.factorialsr   r   Z$sympy.functions.elementary.complexesr   r   Z&sympy.functions.elementary.exponentialr   r   Z#sympy.functions.elementary.integersr   r   Z(sympy.functions.elementary.miscellaneousr   r   r   r    Z(sympy.functions.elementary.trigonometricr!   r"   r#   r$   r%   r&   Zsympy.integrals.integralsr'   Zsympy.series.limitsr(   Zsympyr)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   Zsympy.physics.quantumr5   r6   r7   Z	sympy.abcr8   r9   r:   r;   r<   r=   r>   r?   r@   rA   Z
test_latexrC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   disabledrT   rU   rX   rY   rZ   r~   r   r   r   r   r   r   r   r   r   r   r   r   Z EVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Zdetr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   rR   rR   rR   rS   <module>   s`    04






































































































l




 










$		     ,& 	
 $
#"		$(."C222Q						

	