a
    khr                     @  s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZmZmZmZmZmZ d dlmZmZmZ d dlmZ d d	lmZmZmZmZ d d
lmZ d dl m!Z! d dl"m#Z# d dl$m%Z%m&Z& d dl'm(Z( d dl)m*Z* d dl+m,Z,m-Z-m.Z.m/Z/m0Z0 d dl1m2Z2 d dl3m4Z4m5Z5 d dl6m7Z7 G dd deZ8G dd de8Z9G dd deZ:G dd de8e:dZ;dd Z<G dd  d eZ=G d!d" d"eZ>ed#d$ Z?d%S )&    )annotations)product)Add)cacheit)Expr)DefinedFunctionArgumentIndexError
expand_log
expand_mulFunctionClass	PoleErrorexpand_multinomialexpand_complex)	fuzzy_and	fuzzy_notfuzzy_or)Mul)IntegerRationalpiI)global_parameters)Pow)S)WildDummy)sympify)	factorial)arg
unpolarifyimreAbs)sqrt)multiplicityperfect_power)	factorintc                   @  s   e Zd ZdZejfZedd ZdddZ	dd Z
ed	d
 Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd ZdS )ExpBaseTc                 C  s   | j jS N)expkindself r-   T/var/www/auris/lib/python3.9/site-packages/sympy/functions/elementary/exponential.pyr*   (   s    zExpBase.kind   c                 C  s   t S )z=
        Returns the inverse function of ``exp(x)``.
        logr,   argindexr-   r-   r.   inverse,   s    zExpBase.inversec                 C  sP   | j s| tjfS | j}|j}|s0| js0| }|rFtj| | fS | tjfS )a-  
        Returns this with a positive exponent as a 2-tuple (a fraction).

        Examples
        ========

        >>> from sympy import exp
        >>> from sympy.abc import x
        >>> exp(-x).as_numer_denom()
        (1, exp(x))
        >>> exp(x).as_numer_denom()
        (exp(x), 1)
        )is_commutativer   Oner)   is_negativecould_extract_minus_signfunc)r,   r)   Zneg_expr-   r-   r.   as_numer_denom2   s    
zExpBase.as_numer_denomc                 C  s
   | j d S )z7
        Returns the exponent of the function.
        r   )argsr+   r-   r-   r.   r)   L   s    zExpBase.expc                 C  s   |  dt| j fS )z7
        Returns the 2-tuple (base, exponent).
        r/   )r9   r   r;   r+   r-   r-   r.   as_base_expS   s    zExpBase.as_base_expc                 C  s   |  | j S r(   )r9   r)   Zadjointr+   r-   r-   r.   _eval_adjointY   s    zExpBase._eval_adjointc                 C  s   |  | j S r(   )r9   r)   	conjugater+   r-   r-   r.   _eval_conjugate\   s    zExpBase._eval_conjugatec                 C  s   |  | j S r(   )r9   r)   Z	transposer+   r-   r-   r.   _eval_transpose_   s    zExpBase._eval_transposec                 C  s.   | j }|jr |jrdS |jr dS |jr*dS d S NTF)r)   is_infiniteis_extended_negativeis_extended_positive	is_finiter,   r   r-   r-   r.   _eval_is_finiteb   s    zExpBase._eval_is_finitec                 C  sH   | j | j }|j | j kr>|jj}|r(dS |jjrDt|rDdS n|jS d S rA   )r9   r;   r)   is_zerois_rationalr   )r,   szr-   r-   r.   _eval_is_rationall   s    zExpBase._eval_is_rationalc                 C  s   | j tju S r(   )r)   r   NegativeInfinityr+   r-   r-   r.   _eval_is_zerow   s    zExpBase._eval_is_zeroc                 C  s"   |   \}}tt||dd|S )z;exp(arg)**e -> exp(arg*e) if assumptions allow it.
        Fevaluate)r<   r   _eval_power)r,   otherber-   r-   r.   rQ   z   s    zExpBase._eval_powerc                   s|   ddl m} ddlm}  jd }|jrH|jrHt fdd|jD S t	||rr|jrr| 
|jg|jR  S  
|S )Nr   )Product)Sumc                 3  s   | ]}  |V  qd S r(   )r9   ).0xr+   r-   r.   	<genexpr>       z1ExpBase._eval_expand_power_exp.<locals>.<genexpr>)Zsympy.concrete.productsrU   Zsympy.concrete.summationsrV   r;   is_Addr5   r   Zfromiter
isinstancer9   functionlimits)r,   hintsrU   rV   r   r-   r+   r.   _eval_expand_power_exp   s    
zExpBase._eval_expand_power_expN)r/   )__name__
__module____qualname__Z
unbranchedr   ComplexInfinity_singularitiespropertyr*   r4   r:   r)   r<   r=   r?   r@   rG   rL   rN   rQ   r`   r-   r-   r-   r.   r'   #   s"   



r'   c                   @  s@   e Zd ZdZdZdZdd Zdd Zdd	 Zd
d Z	dd Z
dS )	exp_polara<  
    Represent a *polar number* (see g-function Sphinx documentation).

    Explanation
    ===========

    ``exp_polar`` represents the function
    `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
    `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
    the main functions to construct polar numbers.

    Examples
    ========

    >>> from sympy import exp_polar, pi, I, exp

    The main difference is that polar numbers do not "wrap around" at `2 \pi`:

    >>> exp(2*pi*I)
    1
    >>> exp_polar(2*pi*I)
    exp_polar(2*I*pi)

    apart from that they behave mostly like classical complex numbers:

    >>> exp_polar(2)*exp_polar(3)
    exp_polar(5)

    See Also
    ========

    sympy.simplify.powsimp.powsimp
    polar_lift
    periodic_argument
    principal_branch
    TFc                 C  s   t t| jd S Nr   )r)   r!   r;   r+   r-   r-   r.   	_eval_Abs   s    zexp_polar._eval_Absc                 C  sx   t | jd }z|t kp |tk}W n ty:   d}Y n0 |rD| S t| jd |}|dkrtt |dk rtt|S |S )z. Careful! any evalf of polar numbers is flaky r   T)r    r;   r   	TypeErrorr)   _eval_evalfr!   )r,   precibadresr-   r-   r.   rk      s    
zexp_polar._eval_evalfc                 C  s   |  | jd | S rh   )r9   r;   )r,   rR   r-   r-   r.   rQ      s    zexp_polar._eval_powerc                 C  s   | j d jrdS d S )Nr   T)r;   is_extended_realr+   r-   r-   r.   _eval_is_extended_real   s    z exp_polar._eval_is_extended_realc                 C  s"   | j d dkr| tjfS t| S rh   )r;   r   r6   r'   r<   r+   r-   r-   r.   r<      s    
zexp_polar.as_base_expN)ra   rb   rc   __doc__is_polaris_comparableri   rk   rQ   rq   r<   r-   r-   r-   r.   rg      s   %rg   c                   @  s   e Zd Zdd ZdS )ExpMetac                 C  s&   t |jjv rdS t|to$|jtju S )NT)r)   	__class____mro__r\   r   baser   Exp1)clsinstancer-   r-   r.   __instancecheck__   s    zExpMeta.__instancecheck__N)ra   rb   rc   r|   r-   r-   r-   r.   ru      s   ru   c                      s   e Zd ZdZd+ddZdd Zedd Zed	d
 Z	e
edd Zd,ddZ fddZdd Zdd Zdd Zdd Zd-ddZdd Zdd  Zd!d" Zd#d$ Zd%d& Zd'd( Zd)d* Z  ZS ).r)   a9  
    The exponential function, :math:`e^x`.

    Examples
    ========

    >>> from sympy import exp, I, pi
    >>> from sympy.abc import x
    >>> exp(x)
    exp(x)
    >>> exp(x).diff(x)
    exp(x)
    >>> exp(I*pi)
    -1

    Parameters
    ==========

    arg : Expr

    See Also
    ========

    log
    r/   c                 C  s   |dkr| S t | |dS )z@
        Returns the first derivative of this function.
        r/   N)r   r2   r-   r-   r.   fdiff   s    z	exp.fdiffc                 C  s   ddl m}m} | jd }|jrttj }||| fv r>tjS |	t
t }|r||d| r|||rvtjS |||rtjS |||tj rt S |||tj rtS d S )Nr   )askQ   )Zsympy.assumptionsr~   r   r;   is_Mulr   r   InfinityNaNas_coefficientr   integerZevenr6   ZoddNegativeOneHalf)r,   Zassumptionsr~   r   r   ZIoocoeffr-   r-   r.   _eval_refine   s"    

zexp._eval_refinec                 C  s~  ddl m} ddlm} ddlm} ddlm} t||rB|	 S t
jrTttj|S |jr|tju rjtjS |jrvtjS |tju rtjS |tju rtjS |tju rtjS n|tju rtjS t|tr|jd S t|| r|t	|jt	|jS t||r|| S |jr|tt }|rd| j rr|j!r<tjS |j"rJtj#S |tj$ j!r^t S |tj$ j"rtS n<|j%r|d }|dkr|d8 }||kr| |t t S |& \}}|tjtjfv r<|j'r8|tju r| }t(|jr|tjurtjS t(|j)r&t*|tjur&tjS t(|j+r8tjS d S |gd  }	}
t,-|D ]R}||}t|tr|
d u r|jd }
n d S n|j.r|	/| n d S qR|
r|
t,|	  S d S |j0rlg }g }d}|jD ]p}|tju r|/| q| |}t|| r:|jd |kr.|/|jd  d	}n
|/| n
|/| q|sT|rlt,| | t1| dd
 S |jrztjS d S )Nr   AccumBounds)
MatrixBaseSetExpr
logcombiner   r/   FTrO   )2sympy.calculusr   Zsympy.matrices.matrixbaser   sympy.sets.setexprr   sympy.simplify.simplifyr   r\   r)   r   Z
exp_is_powr   r   ry   	is_Numberr   rH   r6   r   rM   Zerord   r1   r;   minmax
_eval_funcr   r   r   r   
is_integeris_evenZis_oddr   r   is_RationalZas_coeff_Mul	is_numberr!   is_positiver    r7   r   	make_argsrt   appendr[   r   )rz   r   r   r   r   r   r   ZncoefftermsZcoeffsZlog_termtermZterm_outaddZ
argchangedaZnewar-   r-   r.   eval  s    















zexp.evalc                 C  s   t jS )z?
        Returns the base of the exponential function.
        )r   ry   r+   r-   r-   r.   rx   }  s    zexp.basec                 G  sT   | dk rt jS | dkrt jS t|}|rD|d }|durD|| |  S ||  t|  S )zJ
        Calculates the next term in the Taylor series expansion.
        r   N)r   r   r6   r   r   )nrX   previous_termspr-   r-   r.   taylor_term  s    zexp.taylor_termTc                 K  st   ddl m}m} | jd  \}}|rJ|j|fi |}|j|fi |}|||| }}t|| t|| fS )aJ  
        Returns this function as a 2-tuple representing a complex number.

        Examples
        ========

        >>> from sympy import exp, I
        >>> from sympy.abc import x
        >>> exp(x).as_real_imag()
        (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
        >>> exp(1).as_real_imag()
        (E, 0)
        >>> exp(I).as_real_imag()
        (cos(1), sin(1))
        >>> exp(1+I).as_real_imag()
        (E*cos(1), E*sin(1))

        See Also
        ========

        sympy.functions.elementary.complexes.re
        sympy.functions.elementary.complexes.im
        r   )cossin)(sympy.functions.elementary.trigonometricr   r   r;   as_real_imagexpandr)   )r,   deepr_   r   r   r!   r    r-   r-   r.   r     s    zexp.as_real_imagc                   s   |j rt|jt|j }n|tju r0|jr0t}t|tsD|tju rbdd }t	|| |||S |tu r|js|| j
|| S t 	||S )Nc                 S  s&   | j st| tr"t|  ddiS | S )NrP   F)is_Powr\   r)   r   r<   )r   r-   r-   r.   <lambda>  s
    z exp._eval_subs.<locals>.<lambda>)r   r)   r1   rx   r   ry   Zis_Functionr\   r   
_eval_subs_subssuper)r,   oldnewfrv   r-   r.   r     s    zexp._eval_subsc                 C  sB   | j d jrdS | j d jr>td t | j d  t }|jS d S )Nr   Tr   )r;   rp   is_imaginaryr   r   r   r   r,   Zarg2r-   r-   r.   rq     s
    zexp._eval_is_extended_realc                 C  s   dd }t || jd S )Nc                 s  s   | j V  | jV  d S r(   )
is_complexrC   r   r-   r-   r.   complex_extended_negative  s    z7exp._eval_is_complex.<locals>.complex_extended_negativer   )r   r;   )r,   r   r-   r-   r.   _eval_is_complex  s    zexp._eval_is_complexc                 C  s@   | j t t jrdS t| j jr<| j jr,dS | j t jr<dS d S rA   )r)   r   r   rI   r   rH   is_algebraicr+   r-   r-   r.   _eval_is_algebraic  s    zexp._eval_is_algebraicc                 C  s>   | j jr| jd tjuS | j jr:t | jd  t }|jS d S rh   )	r)   rp   r;   r   rM   r   r   r   r   r   r-   r-   r.   _eval_is_extended_positive  s
    zexp._eval_is_extended_positiver   c              	     s  ddl m  ddlm} ddlm} ddlm} ddlm	} | j
}	|	j|||d}
|
jr`d|
 S ||
 |d}|tju r||| |S |tju r| S |jrtd	|  t fd
d|jD r| S td}|}z||	j||d| }W n ttfy   d}Y n0 |r&|dkr&||| }t
|||}t
||||
|  }|d urd|t|ini }||| kr||S |r|dkr|||
| | |||d |   7 }n|||
| | |7 }| }||ddd}dd }td|gd}|tj| t tj| }|S )Nr   signceiling)limitOrderpowsimpr   logxr/   Cannot expand %s around 0c                 3  s   | ]}t | V  qd S r(   )r\   )rW   r   r   r-   r.   rY     rZ   z$exp._eval_nseries.<locals>.<genexpr>tr   Tr)   r   combinec                 S  s   | j o| jdv S )N)         )r   q)rX   r-   r-   r.   r     rZ   z#exp._eval_nseries.<locals>.<lambda>w)Z
properties)!$sympy.functions.elementary.complexesr   #sympy.functions.elementary.integersr   Zsympy.series.limitsr   sympy.series.orderr   sympy.simplify.powsimpr   r)   _eval_nseriesis_OrderremoveOr   rM   r   rB   r   anyr;   r   as_leading_termgetnNotImplementedError_taylorsubsr1   r   r   replacer   r   )r,   rX   r   r   cdirr   r   r   r   r   Z
arg_seriesarg0r   ZntermscfZ
exp_seriesrrepZ	simpleratr   r-   r   r.   r     sP    


(zexp._eval_nseriesc                 C  sN   g }d }t |D ]4}| || jd |}|j||d}||  qt| S )Nr   r   )ranger   r;   nseriesr   r   r   )r,   rX   r   lgrm   r-   r-   r.   r     s    zexp._taylorc                 C  s   ddl m} | jd  j||d}||d}|tju r@tjS t||rjt	|tj
k rbt| S t|S |tju r||d}|jdu rt|S td|  d S )Nr   r   r   Fr   )Zsympy.calculus.utilr   r;   cancelr   r   r   r   r\   r!   r   r)   r   rB   r   )r,   rX   r   r   r   r   r   r-   r-   r.   _eval_as_leading_term  s    




zexp._eval_as_leading_termc                 K  s0   ddl m} |t| td  t|t|   S )Nr   )r   r   )r   r   r   r   )r,   r   kwargsr   r-   r-   r.   _eval_rewrite_as_sin.  s    zexp._eval_rewrite_as_sinc                 K  s0   ddl m} |t| t|t| td    S )Nr   )r   r   )r   r   r   r   )r,   r   r   r   r-   r-   r.   _eval_rewrite_as_cos2  s    zexp._eval_rewrite_as_cosc                 K  s,   ddl m} d||d  d||d   S )Nr   )tanhr/   r   )Z%sympy.functions.elementary.hyperbolicr   )r,   r   r   r   r-   r-   r.   _eval_rewrite_as_tanh6  s    zexp._eval_rewrite_as_tanhc                 K  sl   ddl m}m} |jrh|tt }|rh|jrh|t| |t|  }}t||sht||sh|t|  S d S )Nr   )r   r   )	r   r   r   r   r   r   r   r   r\   )r,   r   r   r   r   r   ZcosineZsiner-   r-   r.   _eval_rewrite_as_sqrt:  s    
zexp._eval_rewrite_as_sqrtc                 K  s<   |j r8dd |jD }|r8t|d jd ||d S d S )Nc                 S  s(   g | ] }t |trt|jd kr|qS )r/   )r\   r1   lenr;   )rW   r   r-   r-   r.   
<listcomp>E  rZ   z,exp._eval_rewrite_as_Pow.<locals>.<listcomp>r   )r   r;   r   r   )r,   r   r   Zlogsr-   r-   r.   _eval_rewrite_as_PowC  s    zexp._eval_rewrite_as_Pow)r/   )T)r   )ra   rb   rc   rr   r}   r   classmethodr   rf   rx   staticmethodr   r   r   r   rq   r   r   r   r   r   r   r   r   r   r   r   __classcell__r-   r-   r   r.   r)      s0   
	
i

 	
/		r)   )	metaclassc                 C  sR   | j tdd\}}|dkr(|jr(||fS |t}|rJ|jrJ|jrJ||fS dS dS )a  
    Try to match expr with $a + Ib$ for real $a$ and $b$.

    ``match_real_imag`` returns a tuple containing the real and imaginary
    parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
    to :func:`~.re`, :func:`~.im``, and ``as_real_imag()``, this helper will not force things
    by returning expressions themselves containing ``re()`` or ``im()`` and it
    does not expand its argument either.

    TZas_Addr   )NNN)as_independentr   is_realr   )exprr_i_r-   r-   r.   match_real_imagJ  s    
r  c                   @  s   e Zd ZU dZded< ejejfZd*ddZ	d+ddZ
ed,d
dZeedd Zd-ddZdd Zd.ddZdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd/d&d'Zd(d) Zd	S )0r1   a  
    The natural logarithm function `\ln(x)` or `\log(x)`.

    Explanation
    ===========

    Logarithms are taken with the natural base, `e`. To get
    a logarithm of a different base ``b``, use ``log(x, b)``,
    which is essentially short-hand for ``log(x)/log(b)``.

    ``log`` represents the principal branch of the natural
    logarithm. As such it has a branch cut along the negative
    real axis and returns values having a complex argument in
    `(-\pi, \pi]`.

    Examples
    ========

    >>> from sympy import log, sqrt, S, I
    >>> log(8, 2)
    3
    >>> log(S(8)/3, 2)
    -log(3)/log(2) + 3
    >>> log(-1 + I*sqrt(3))
    log(2) + 2*I*pi/3

    See Also
    ========

    exp

    ztuple[Expr]r;   r/   c                 C  s$   |dkrd| j d  S t| |dS )z?
        Returns the first derivative of the function.
        r/   r   N)r;   r   r2   r-   r-   r.   r}     s    z	log.fdiffc                 C  s   t S )zC
        Returns `e^x`, the inverse function of `\log(x)`.
        )r)   r2   r-   r-   r.   r4     s    zlog.inverseNc                 C  s  ddl m} ddlm} t|}|d urt|}|dkrL|dkrFtjS tjS zBt||}|rz|t	|||  t	|  W S t	|t	| W S W n t
y   Y n0 |tjur| || | S | |S |jr>|jrtjS |tju rtjS |tju  rtjS |tju rtjS |tju rtjS |jr>|jdkr>| |j S |jrd|jtju rd|jjrd|jS t|tr|jjr|jS t|tr|jjrt|j\}}|rf|jrf|dt ; }|tkr|dt 8 }|t|t dd S n|t|t r t!|jS t||rP|j"j#r,|t	|j"t	|j$S |j"jrH|tjt	|j$S tjS nt||rf|%| S |jr|j&rtt | |  S |tju rtjS |tju rtjS |jrtjS |j's:|(t}|d ur:|tju rtjS |tju rtjS |jr:|j)r tt tj* | | S t t tj* | |  S |jr|j+r|j,tdd\}}	|j&rt|d	9 }|	d	9 }	t|	dd}	|	j,td
d\}}|(t}|j-r|r|j-r|j-r|jr|j#rtt tj* | ||  S |j&rt t tj* | ||   S nddl.m/}
 || 0 }| 0 }t1 }||v r|
|t2|	 }|j#rj| |t||   S | |t|| t   S nP||v r|
|t2|	 }|j#r| |t||    S | |tt||    S d S )Nr   r   r   r/   r   Fr   r   r   T)ratsimp)3r   r   r   r   r   r   r   rd   r$   r1   
ValueErrorry   r   rH   r6   r   r   rM   r   r   r   r   rx   r)   rp   r\   r   r  rt   r   r
   r   rg   r   r   r   r   r   r7   r[   r   is_nonnegativer   r   r   r  Zsympy.simplifyr  r   _log_atan_tabler"   )rz   r   rx   r   r   r   r  r  r   Zarg_r  r   t1Z
atan_tablemodulusr-   r-   r.   r     s    


 







 


zlog.evalc                 G  s   ddl m} | dk rtjS t|}| dkr.|S |rb|d }|durb||  | | | d  dddS dd	| d	   || d   | d  S )
zV
        Returns the next term in the Taylor series expansion of `\log(1+x)`.
        r   r   r   Nr/   Tr)   r   r   )r   r   r   r   r   )r   rX   r   r   r   r-   r-   r.   r     s     zlog.taylor_termTc                 K  sx  ddl m}m} |dd}|dd}t| jdkrLt| j| j ||dS | jd }|jrt	|}d }	d}
|dur|\}}
| |}	|rt
|}|| vrtd	d
 | D }	|	d ur|
|	 S n|jrt|jt|j S |jrg }g }|jD ]}|s|js|jrR| |}t|trF|| |jf i | n
|| q|jr~| | }|| |tj q|| qt| tt|  S |jst|tr:|s|jjr|j js|jd jr|jd j!s|j jrn|j }|j}| |}t|tr,t"||jf i | S t"|| S n4t||rn|sV|j#jrn|t|j#g|j$R  S | |S )Nr   )rV   rU   forceFfactorr   )r   r  r/   c                 s  s   | ]\}}|t | V  qd S r(   r0   )rW   valr   r-   r-   r.   rY   7  rZ   z'log._eval_expand_log.<locals>.<genexpr>)%Zsympy.concreterV   rU   getr   r;   r	   r9   Z
is_Integerr%   r&   keyssumitemsr   r1   r   r   r   r   rs   r\   r   _eval_expand_logr7   r   r   r   r   r   r)   rp   rx   is_nonpositiver   r]   r^   )r,   r   r_   rV   rU   r  r  r   r   Zlogargr   r  ZnonposrX   r   rS   rT   r-   r-   r.   r  $  sh    




(

zlog._eval_expand_logc                 K  s   ddl m}m}m} t| jdkr:|| j| j fi |S | || jd fi |}|d rf||}||dd}t|| g|d dS )	Nr   )r	   simplifyinversecombiner   r4   Tr  Zmeasure)key)r   r	   r  r  r   r;   r9   r   )r,   r   r	   r  r  r  r-   r-   r.   _eval_simplify]  s    zlog._eval_simplifyc                 K  s   | j d }|r&| j d j|fi |}t|}||kr@| tjfS t|}|ddrvd|d< t|j|fi ||fS t||fS dS )a  
        Returns this function as a complex coordinate.

        Examples
        ========

        >>> from sympy import I, log
        >>> from sympy.abc import x
        >>> log(x).as_real_imag()
        (log(Abs(x)), arg(x))
        >>> log(I).as_real_imag()
        (0, pi/2)
        >>> log(1 + I).as_real_imag()
        (log(sqrt(2)), pi/4)
        >>> log(I*x).as_real_imag()
        (log(Abs(x)), arg(I*x))

        r   r1   FcomplexN)r;   r   r"   r   r   r   r  r1   )r,   r   r_   ZsargZsarg_absZsarg_argr-   r-   r.   r   h  s    

zlog.as_real_imagc                 C  s\   | j | j }|j | j krR| jd d jr,dS |jd jrXt| jd d jrXdS n|jS d S Nr   r/   TF)r9   r;   rH   rI   r   r,   rJ   r-   r-   r.   rL     s     zlog._eval_is_rationalc                 C  s\   | j | j }|j | j krR| jd d jr,dS t| jd d jrX| jd jrXdS n|jS d S r  )r9   r;   rH   r   r   r  r-   r-   r.   r     s    zlog._eval_is_algebraicc                 C  s   | j d jS rh   r;   rD   r+   r-   r-   r.   rq     s    zlog._eval_is_extended_realc                 C  s   | j d }t|jt|jgS rh   )r;   r   r   r   rH   )r,   rK   r-   r-   r.   r     s    
zlog._eval_is_complexc                 C  s   | j d }|jrdS |jS Nr   F)r;   rH   rE   rF   r-   r-   r.   rG     s    
zlog._eval_is_finitec                 C  s   | j d d jS Nr   r/   r  r+   r-   r-   r.   r     s    zlog._eval_is_extended_positivec                 C  s   | j d d jS r  )r;   rH   r+   r-   r-   r.   rN     s    zlog._eval_is_zeroc                 C  s   | j d d jS r  )r;   Zis_extended_nonnegativer+   r-   r-   r.   _eval_is_extended_nonnegative  s    z!log._eval_is_extended_nonnegativer   c           $        s  ddl m} ddlm} ddlm} | jd |krF|d u rBt|S |S | jd }|ddd}	|dkrhd}||||	 }
t	d	t	d
 }}|

||	|  }|d ur|| ||  }}|dkr||	s||	s|d u r|t| n|| }|t||t|  7 }|S dd }z|
j|	|dd\}}W n tttfy   |
j|	 |dd}|jr d7  |
j|	 |dd}qZz| j|	dd\}}W n. ty   | j|	ddtj }}Y n0 Y n0 |
||	|   d  j|	 |dd}|tr
||}t||r|  |||	\}}|d u r>t|n|}|jst||t|  ||  }|}dddddddddd	}| jf i |}| s| r|| t| jf i |}n||t|jf i |}||kr|S |||  | S  fdd}i }t| D ]*}|||	\}}||tj| ||< q"tj }i }|}||  k rtj!|  | } |D ]$}!||!tj| ||!   ||!< q~|||}|tj 7 }q\t||t|  ||  }|D ]}!|||!  |	|!  7 }q|j"rt#|
dkrddl$m%}" t&|
'|	D ]"\}#}|j(rF|#dkr, qPq,|#dk r|)|	\} }|dt* t+ |"t#|  d 7 }||	|| }|||  | S )Nr   r   r   )r   r   TZpositiver/   kr   c              	   S  s   t jt j }}t| D ]^}||rn| \}}||krvz| |W   S  tyj   | t jf Y   S 0 q||9 }q||fS r(   )	r   r6   r   r   r   hasr<   leadtermr  )r   rX   r   r)   r  rx   r-   r-   r.   	coeff_exp  s    

z$log._eval_nseries.<locals>.coeff_expr   r   )r   r   r   )r   F)	r   r1   mulZ	power_expZ
power_baseZmultinomialbasicr  r  c                   sN   i }t | |D ]:\}}|| }| k r||tj| | ||   ||< q|S r(   )r   r  r   r   )d1Zd2ro   e1e2exr   r-   r.   r'    s    $zlog._eval_nseries.<locals>.mul	Heaviside   ),r   r   r   r   sympy.core.symbolr   r;   r1   r   r   matchr#  r$  r  r   r   r   r   r   r   r   r   r   r)   r\   r   r   r   r8   r   r   r  r6   r   r7   r    'sympy.functions.special.delta_functionsr.  	enumeratelseriesr  as_coeff_exponentr   r   )$r,   rX   r   r   r   r   r   r   r   r   rK   r"  r   r   r%  r   rS   rJ   r   _dro   Z_resZlogflagsr  r'  Zptermsr   Zco1r*  r   pkr   r,  r.  rm   r-   r   r.   r     s    

"&&
"
"


 zlog._eval_nseriesc                 C  s  | j d  }tddd}|dkr&d}|||| }z|j||dd\}}W n* tyx   |j|||d}	t|	 Y S 0 ||r|||| }|dkrt	d|  t|S |t
jkr|t
jkr|t
j j||dS t||t|  }
|d u  rt|n|}|
|| 7 }
|jrt|dkrdd	lm} t||D ]"\}}|jrX|d
kr> qbq>|d
k r||\}}|
dt t |t| d 7 }
|
S )Nr   r   Tr!  r/   r&  r   r   r-  r/  r0  )r;   Ztogetherr   r   r$  r  r   r1   r#  r   r   r6   r   r7   r    r3  r.  r4  r5  r  r6  r   r   )r,   rX   r   r   r   r   rK   crT   r   ro   r.  rm   r   r   r7  r-   r-   r.   r   '  s:    


 zlog._eval_as_leading_term)r/   )r/   )N)T)T)r   )ra   rb   rc   rr   __annotations__r   r   rd   re   r}   r4   r   r   r   r   r   r  r  r   rL   r   rq   r   rG   r   rN   r   r   r   r-   r-   r-   r.   r1   _  s.   
!
	
}
9
 

tr1   c                      sz   e Zd ZdZeejddd ejfZe	dddZ
dd	d
Zdd Zdd Zdd Zdd Zd fdd	Zdd Z  ZS )LambertWa  
    The Lambert W function $W(z)$ is defined as the inverse
    function of $w \exp(w)$ [1]_.

    Explanation
    ===========

    In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
    for any complex number $z$.  The Lambert W function is a multivalued
    function with infinitely many branches $W_k(z)$, indexed by
    $k \in \mathbb{Z}$.  Each branch gives a different solution $w$
    of the equation $z = w \exp(w)$.

    The Lambert W function has two partially real branches: the
    principal branch ($k = 0$) is real for real $z > -1/e$, and the
    $k = -1$ branch is real for $-1/e < z < 0$. All branches except
    $k = 0$ have a logarithmic singularity at $z = 0$.

    Examples
    ========

    >>> from sympy import LambertW
    >>> LambertW(1.2)
    0.635564016364870
    >>> LambertW(1.2, -1).n()
    -1.34747534407696 - 4.41624341514535*I
    >>> LambertW(-1).is_real
    False

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lambert_W_function
    r   FrO   Nc                 C  sB  |t jkr| |S |d u r t j}|jr|jr2t jS |t ju rBt jS |dt j krVt jS |td d krrtd S |dtd krtdS |t d krtt d S |t	dt j krt jS |t j
u rt j
S t|jr|jrt jS |t ju r>|t d krt t d S |dt j kr"t jS |dt	d kr>td S d S )Nr   r   r/   r0  )r   r   rH   ry   r6   r   r1   r   r   r)   r   r   rM   r   )rz   rX   r"  r-   r-   r.   r   y  s>    




zLambertW.evalr/   c                 C  sv   | j d }t| j dkr:|dkrht||dt|   S n.| j d }|dkrht|||dt||   S t| |dS )z?
        Return the first derivative of this function.
        r   r/   N)r;   r   r<  r   )r,   r3   rX   r"  r-   r-   r.   r}     s    

zLambertW.fdiffc                 C  s   | j d }t| j dkr tj}n
| j d }|jrZ|dtj  jrDdS |dtj  jrdS nb|d jr|jr~|dtj  jr~dS |js|dtj  j	rdS n"t
|jrt
|d jr|jrdS d S r  )r;   r   r   r   rH   ry   r   r  r7   r	  r   rp   )r,   rX   r"  r-   r-   r.   rq     s"    


zLambertW._eval_is_extended_realc                 C  s   | j d jS rh   )r;   rE   r+   r-   r-   r.   rG     s    zLambertW._eval_is_finitec                 C  sD   | j | j }|j | j kr:t| jd jr@| jd jr@dS n|jS d S r  )r9   r;   r   rH   r   r  r-   r-   r.   r     s
    zLambertW._eval_is_algebraicc                 C  sF   t | jdkrB| jd }||d }|js8| |S ||S d S )Nr/   r   )r   r;   r   r   rH   r9   r   )r,   rX   r   r   r   r   r-   r-   r.   r     s    

zLambertW._eval_as_leading_termr   c           
        s   t | jdkrddlm} ddlm} | jd j|||d  j||d}d}|jrZ|j	}||| dkrt
 fddtd||| D  }	t|	}	ntj}	|	||| | S t |||S )	Nr/   r   r   r   r   r   c                   s@   g | ]8}t j |d   t||d   t|d    |  qS )r/   r   )r   r6   r   r   )rW   r"  r   r-   r.   r     s   
z*LambertW._eval_nseries.<locals>.<listcomp>)r   r;   r   r   r   r   r   r   r   r)   r   r   r   r   r   r   r   )
r,   rX   r   r   r   r   r   ltZlterJ   r   r   r.   r     s     
zLambertW._eval_nseriesc                 C  s8   | j d }t| j dkr|jS t|j| j d jgS d S r  )r;   r   rH   r   )r,   rX   r-   r-   r.   rN     s    
zLambertW._eval_is_zero)N)r/   )r   )ra   rb   rc   rr   r   r   ry   rd   re   r   r   r}   rq   rG   r   r   r   rN   r   r-   r-   r   r.   r<  T  s   "#
r<  c                )   C  s"  t dtd dtd t ddt d  td t dt dt d  dt d  td t ddt d  ttdd t dt t dd  dt d  ttdd t dd td t dd td t dt d t t dd  td t dd ttdd t t dd t dt d  ttdd t ddt d d  td	 t d t d	 dt t dd   td	 t ddt d d  ttdd	 t dt d	 dt dt d   ttdd	 dt d td
 dt d dt d  td
 dt d ttdd
 dt d dt d  ttdd
 iS )Nr   r/   r   r/  r   r   r      
      )r#   r   r   r-   r-   r-   r.   r
    s(    (.$**"."r
  N)@
__future__r   	itertoolsr   Zsympy.core.addr   Zsympy.core.cacher   Zsympy.core.exprr   Zsympy.core.functionr   r   r	   r
   r   r   r   r   Zsympy.core.logicr   r   r   Zsympy.core.mulr   Zsympy.core.numbersr   r   r   r   Zsympy.core.parametersr   Zsympy.core.powerr   Zsympy.core.singletonr   r1  r   r   Zsympy.core.sympifyr   Z(sympy.functions.combinatorial.factorialsr   r   r   r   r    r!   r"   Z(sympy.functions.elementary.miscellaneousr#   Zsympy.ntheoryr$   r%   Zsympy.ntheory.factor_r&   r'   rg   ru   r)   r  r1   r<  r
  r-   r-   r-   r.   <module>   sB   (hI  q   x 