a
    º”hb  ã                   @   sx   d Z ddlZg d¢Zejddddd„ƒZejddddd	„ƒZejdddd
d„ƒZejdd„ ƒZejddd„ƒZ	dS )z 
Eigenvalue spectrum of graphs.
é    N)Úlaplacian_spectrumÚadjacency_spectrumÚmodularity_spectrumÚnormalized_laplacian_spectrumÚbethe_hessian_spectrumÚweight)Z
edge_attrsc                 C   s"   ddl }|j tj| |d ¡ ¡S )a¨  Returns eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See :func:`~networkx.convert_matrix.to_numpy_array` for other options.

    See Also
    --------
    laplacian_matrix

    Examples
    --------
    The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
    to the number of connected components of G.

    >>> G = nx.Graph()  # Create a graph with 5 nodes and 3 connected components
    >>> G.add_nodes_from(range(5))
    >>> G.add_edges_from([(0, 2), (3, 4)])
    >>> nx.laplacian_spectrum(G)
    array([0., 0., 0., 2., 2.])

    r   N©r   )ÚscipyÚlinalgÚeigvalshÚnxZlaplacian_matrixÚtodense©ÚGr   Úsp© r   úF/var/www/auris/lib/python3.9/site-packages/networkx/linalg/spectrum.pyr      s    'r   c                 C   s"   ddl }|j tj| |d ¡ ¡S )a#  Return eigenvalues of the normalized Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    normalized_laplacian_matrix
    r   Nr   )r	   r
   r   r   Znormalized_laplacian_matrixr   r   r   r   r   r   ;   s    ÿr   c                 C   s"   ddl }|j tj| |d ¡ ¡S )a  Returns eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    adjacency_matrix
    r   Nr   )r	   r
   Úeigvalsr   Zadjacency_matrixr   r   r   r   r   r   ]   s    r   c                 C   s8   ddl }|  ¡ r"|j t | ¡¡S |j t | ¡¡S dS )aª  Returns eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    r   N)r	   Zis_directedr
   r   r   Zdirected_modularity_matrixZmodularity_matrix)r   r   r   r   r   r   }   s    r   c                 C   s    ddl }|j t | |¡ ¡ ¡S )uþ  Returns eigenvalues of the Bethe Hessian matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    r : float
       Regularizer parameter

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    bethe_hessian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. ZdeborovÃ¡
       "Spectral clustering of graphs with the bethe hessian",
       Advances in Neural Information Processing Systems. 2014.
    r   N)r	   r
   r   r   Zbethe_hessian_matrixr   )r   Úrr   r   r   r   r   œ   s    r   )r   )r   )r   )N)
Ú__doc__Znetworkxr   Ú__all__Ú	_dispatchr   r   r   r   r   r   r   r   r   Ú<module>   s   	
+
!

