
    fTh;                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zYOSO model configuration   )PretrainedConfig)loggingc                   `   ^  \ rS rSrSrSr                      SU 4S jjrSrU =r$ )
YosoConfig   a  
This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the YOSO
[uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50265):
        Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`YosoModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimension of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
    use_expectation (`bool`, *optional*, defaults to `True`):
        Whether or not to use YOSO Expectation. Overrides any effect of num_hash.
    hash_code_len (`int`, *optional*, defaults to 9):
        The length of hashes generated by the hash functions.
    num_hash (`int`, *optional*, defaults to 64):
        Number of hash functions used in [`YosoSelfAttention`].
    conv_window (`int`, *optional*):
        Kernel size of depth-wise convolution.
    use_fast_hash (`bool`, *optional*, defaults to `False`):
        Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.
    lsh_backward (`bool`, *optional*, defaults to `True`):
        Whether or not to perform backpropagation using Locality Sensitive Hashing.

Example:

```python
>>> from transformers import YosoConfig, YosoModel

>>> # Initializing a YOSO uw-madison/yoso-4096 style configuration
>>> configuration = YosoConfig()

>>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration
>>> model = YosoModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```yosoc                   > [         TU ]  " SUUUS.UD6  Xl        Xl        X l        X0l        X@l        XPl        X`l        Xpl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsposition_embedding_typeuse_expectationhash_code_lennum_hashconv_windowuse_fast_hashlsh_backward)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r
   r   r   kwargs	__class__s                           c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/yoso/configuration_yoso.pyr   YosoConfig.__init___   s    4 	sl\hslrs$'>$&!2#6 !2$#6 ,H)!2.,'>$.* &*(    )r   r    r   r   r   r   r   r   r   r"   r   r   r   r   r   r   r   r!   r   )iY  i      r)   i   gelu皙?r+   i      g{Gz?g-q=absoluteT	   @   NTTr,          )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r%   s   @r&   r   r      s_    BH J %( $ */.) .)r(   r   N)
r6   configuration_utilsr   utilsr   
get_loggerr2   loggerr   __all__r   r(   r&   <module>r?      s;     3  
		H	%u)! u)p .r(   