
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  \R                  " \5      r " S	 S
\5      r " S S\
5      rS
S/rg)zYOLOS model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingc                   d   ^  \ rS rSrSrSrSSSSSSSS	S
SS/SSSSSSSSSSSS4U 4S jjrSrU =r$ )YolosConfig   a  
This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the YOLOS
[hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    image_size (`List[int]`, *optional*, defaults to `[512, 864]`):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 16):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether to add a bias to the queries, keys and values.
    num_detection_tokens (`int`, *optional*, defaults to 100):
        The number of detection tokens.
    use_mid_position_embeddings (`bool`, *optional*, defaults to `True`):
        Whether to use the mid-layer position encodings.
    auxiliary_loss (`bool`, *optional*, defaults to `False`):
        Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
    class_cost (`float`, *optional*, defaults to 1):
        Relative weight of the classification error in the Hungarian matching cost.
    bbox_cost (`float`, *optional*, defaults to 5):
        Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
    giou_cost (`float`, *optional*, defaults to 2):
        Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
    bbox_loss_coefficient (`float`, *optional*, defaults to 5):
        Relative weight of the L1 bounding box loss in the object detection loss.
    giou_loss_coefficient (`float`, *optional*, defaults to 2):
        Relative weight of the generalized IoU loss in the object detection loss.
    eos_coefficient (`float`, *optional*, defaults to 0.1):
        Relative classification weight of the 'no-object' class in the object detection loss.

Example:

```python
>>> from transformers import YolosConfig, YolosModel

>>> # Initializing a YOLOS hustvl/yolos-base style configuration
>>> configuration = YolosConfig()

>>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
>>> model = YolosModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```yolosi      i   gelug        g{Gz?g-q=i   i`     r   Td   F         g?c                 <  > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        g )N )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasnum_detection_tokensuse_mid_position_embeddingsauxiliary_loss
class_cost	bbox_cost	giou_costbbox_loss_coefficientgiou_loss_coefficienteos_coefficient)selfr   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   kwargs	__class__s                           e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/yolos/configuration_yolos.pyr   YolosConfig.__init__h   s    4 	"6"&!2#6 !2$#6 ,H)!2,$$( $8!+F(,$""%:"%:".    )r    r)   r+   r-   r*   r/   r,   r.   r   r   r   r#   r!   r   r"   r   r%   r'   r   r$   r&   r(   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r2   s   @r3   r   r      sc    EN J %(: $(/3/ 3/r5   r   c                       \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       r\S\
4S j5       rSrg)	YolosOnnxConfig   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr%   heightwidth)r   r   r   r   r   r0   s    r3   inputsYolosOnnxConfig.inputs   s&    WHQX!YZ
 	
r5   c                     g)Ng-C6?r   rG   s    r3   atol_for_validation#YolosOnnxConfig.atol_for_validation   s    r5   c                     g)Nr   r   rG   s    r3   default_onnx_opset"YolosOnnxConfig.default_onnx_opset   s    r5   r   N)r6   r7   r8   r9   r   parsetorch_onnx_minimum_versionpropertyr   strintrH   floatrK   rN   r<   r   r5   r3   r?   r?      ss    !(v!6
WS#X%6 67 
 
 U   C  r5   r?   N)r:   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   
get_loggerr6   loggerr   r?   __all__r   r5   r3   <module>r_      sW      #   3   
		H	%}/" }/@j ( +
,r5   