
    fTh#                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zX-MOD configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   f   ^  \ rS rSrSrSr                         SU 4S jjrSrU =r$ )
XmodConfig   aN  
This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`XmodModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    is_decoder (`bool`, *optional*, defaults to `False`):
        Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.
    pre_norm (`bool`, *optional*, defaults to `False`):
        Whether to apply layer normalization before each block.
    adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2):
        The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`.
    adapter_layer_norm (`bool`, *optional*, defaults to `False`):
        Whether to apply a new layer normalization before the adapter modules (shared across all adapters).
    adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`):
        Whether to reuse the second layer normalization and apply it before the adapter modules as well.
    ln_before_adapter (`bool`, *optional*, defaults to `True`):
        Whether to apply the layer normalization before the residual connection around the adapter module.
    languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`):
        An iterable of language codes for which adapter modules should be initialized.
    default_language (`str`, *optional*):
        Language code of a default language. It will be assumed that the input is in this language if no language
        codes are explicitly passed to the forward method.

Examples:

```python
>>> from transformers import XmodConfig, XmodModel

>>> # Initializing an X-MOD facebook/xmod-base style configuration
>>> configuration = XmodConfig()

>>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration
>>> model = XmodModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```xmodc                 Z  > [         TU ]  " SXUS.UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [-        U5      U l        UU l        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropoutpre_normadapter_reduction_factoradapter_layer_normadapter_reuse_layer_normln_before_adapterlist	languagesdefault_language)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r)   r*   kwargs	__class__s                              c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/xmod/configuration_xmod.pyr   XmodConfig.__init__r   s    : 	sl\hslrs$&!2#6 $!2#6 ,H)'>$.!2,'>$""4 (@%"4(@%!2i 0    )r%   r$   r&   r   r"   r*   r   r   r   r   r   r)   r   r'   r   r   r   r    r#   r   r!   r   )i:w  i      r1   i   gelu皙?r3   i      g{Gz?g-q=   r   r4   absoluteTNFr4   FTT)en_XXN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r-   s   @r.   r
   r
      sh    Pd J %( # *!" !%541 41r0   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)XmodOnnxConfig   returnc                 \    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4/5      $ )	Nzmultiple-choicebatchchoicesequence)r   r5   r4   )r   r5   	input_idsattention_mask)taskr   )r+   dynamic_axiss     r.   inputsXmodOnnxConfig.inputs   sG    99))&8
CL&:6Ll+!<0
 	
r0   r   N)
r8   r9   r:   r;   propertyr   strintrL   r>   r   r0   r.   rA   rA      s.    

WS#X%6 67 

 

r0   rA   N)r<   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr8   loggerr
   rA   __all__r   r0   r.   <module>rY      sT      #  3   
		H	%I1! I1Z
Z 
 )
*r0   