
    fThH                     p    S r SSKrSSKrSSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zWavLM model configuration    N   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSr                                                       SU 4S jjr\S 5       rSr	U =r
$ )WavLMConfig   ar+  
This is the configuration class to store the configuration of a [`WavLMModel`]. It is used to instantiate an WavLM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the WavLM
[microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32):
        Vocabulary size of the WavLM model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`WavLMModel`]. Vocabulary size of the model. Defines the different tokens
        that can be represented by the *inputs_ids* passed to the forward method of [`WavLMModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    activation_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for activations inside the fully connected layer.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    final_dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for the final projection layer of [`WavLMForCTC`].
    layerdrop (`float`, *optional*, defaults to 0.1):
        The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
        details.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    feat_extract_norm (`str`, *optional*, defaults to `"group"`):
        The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
        normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
        convolutional layers.
    feat_proj_dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability for output of the feature encoder.
    feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the 1D convolutional layers of the feature
        extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
    conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
        A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
        feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
    conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
        A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
        of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
    conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
        A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
        length of *conv_kernel* defines the number of convolutional layers and has to match the length of
        *conv_dim*.
    conv_bias (`bool`, *optional*, defaults to `False`):
        Whether the 1D convolutional layers have a bias.
    num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
        Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
        embeddings layer.
    num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
        Number of groups of 1D convolutional positional embeddings layer.
    do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
        Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
        True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
        False` corresponds to applying layer norm after the attention layer.
    apply_spec_augment (`bool`, *optional*, defaults to `True`):
        Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
        [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
        Recognition](https://arxiv.org/abs/1904.08779).
    mask_time_prob (`float`, *optional*, defaults to 0.05):
        Probability of each feature vector along the time axis to be chosen as the start of the vector span to be
        masked. Approximately `mask_time_prob * sequence_length // mask_time_length` feature vectors will be masked
        along the time axis. This is only relevant if `apply_spec_augment is True`.
    mask_time_length (`int`, *optional*, defaults to 10):
        Length of vector span along the time axis.
    mask_time_min_masks (`int`, *optional*, defaults to 2),:
        The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
        irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
        mask_time_min_masks''
    mask_feature_prob (`float`, *optional*, defaults to 0.0):
        Probability of each feature vector along the feature axis to be chosen as the start of the vector span to
        be masked. Approximately `mask_time_prob * hidden_size // mask_time_length` feature vectors will be masked
        along the time axis. This is only relevant if `apply_spec_augment is True`.
    mask_feature_length (`int`, *optional*, defaults to 10):
        Length of vector span along the feature axis.
    num_codevectors_per_group (`int`, *optional*, defaults to 320):
        Number of entries in each quantization codebook (group).
    num_codevector_groups (`int`, *optional*, defaults to 2):
        Number of codevector groups for product codevector quantization.
    contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
        The temperature *kappa* in the contrastive loss.
    num_negatives (`int`, *optional*, defaults to 100):
        Number of negative samples for the contrastive loss.
    codevector_dim (`int`, *optional*, defaults to 256):
        Dimensionality of the quantized feature vectors.
    proj_codevector_dim (`int`, *optional*, defaults to 256):
        Dimensionality of the final projection of both the quantized and the transformer features.
    diversity_loss_weight (`int`, *optional*, defaults to 0.1):
        The weight of the codebook diversity loss component.
    ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
        Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
        instance of [`WavLMForCTC`].
    ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
        Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
        occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
        of [`WavLMForCTC`].
    use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
        Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
        instance of [`WavLMForSequenceClassification`].
    classifier_proj_size (`int`, *optional*, defaults to 256):
        Dimensionality of the projection before token mean-pooling for classification.
    tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
        A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
        module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
    tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
        A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
        *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
    tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
        A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
        *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
    xvector_output_dim (`int`, *optional*, defaults to 512):
        Dimensionality of the *XVector* embedding vectors.
    add_adapter (`bool`, *optional*, defaults to `False`):
        Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
        warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
    adapter_kernel_size (`int`, *optional*, defaults to 3):
        Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
    adapter_stride (`int`, *optional*, defaults to 2):
        Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
    num_adapter_layers (`int`, *optional*, defaults to 3):
        Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
        True`.
    output_hidden_size (`int`, *optional*):
        Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
        if `add_adapter is True`.

Example:

```python

```

Example:

```python
>>> from transformers import WavLMConfig, WavLMModel

>>> # Initializing a WavLM facebook/wavlm-base-960h style configuration
>>> configuration = WavLMConfig()

>>> # Initializing a model (with random weights) from the facebook/wavlm-base-960h style configuration
>>> model = WavLMModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```wavlmc8           
        > [         T9U ]  " S0 U8DU0U1U2S.D6  X l        Xl        UU l        [        U5      U l        [        U5      U l        [        U5      U l        UU l	        UU l
        UU l        UU l        UU l        [        U R                  5      U l        X0l        XPl        X`l        X@l        Xpl        Xl        Xl        Xl        Xl        Xl        Xl        Xl        U/U l        Xl        UU l        U)U l        U*U l         [        U R                  5      U R                  :w  dF  [        U R                  5      U R                  :w  d#  [        U R                  5      U R                  :w  aN  [C        S[        U R                  5       S[        U R                  5       S[        U R                  5       S35      eUU l"        UU l#        UU l$        UU l%        UU l&        UU l'        U U l(        U!U l)        U"U l*        U#U l+        U$U l,        U%U l-        U&U l.        U'U l/        U(U l0        U3U l1        U4U l2        U5U l3        U6U l4        U7=(       d    UU l5        U*U l         [        U+5      U l6        [        U,5      U l7        [        U-5      U l8        U.U l9        g )N)pad_token_idbos_token_ideos_token_idzConfiguration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) = z`, `len(config.conv_stride) = z`, `len(config.conv_kernel) = z`. ):super__init__hidden_sizefeat_extract_normfeat_extract_activationlistconv_dimconv_strideconv_kernel	conv_biasnum_bucketsmax_bucket_distancenum_conv_pos_embeddingsnum_conv_pos_embedding_groupslennum_feat_extract_layersnum_hidden_layersintermediate_size
hidden_actnum_attention_headshidden_dropoutattention_dropoutactivation_dropoutfeat_proj_dropoutfinal_dropout	layerdroplayer_norm_epsinitializer_rangenum_ctc_classes
vocab_sizedo_stable_layer_normuse_weighted_layer_sumclassifier_proj_size
ValueErrorapply_spec_augmentmask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthnum_codevectors_per_groupnum_codevector_groupscontrastive_logits_temperaturenum_negativescodevector_dimproj_codevector_dimdiversity_loss_weightctc_loss_reductionctc_zero_infinityadd_adapteradapter_kernel_sizeadapter_stridenum_adapter_layersoutput_hidden_sizetdnn_dimtdnn_kerneltdnn_dilationxvector_output_dim):selfr,   r   r   r"   r    r!   r#   r%   r$   r&   r'   r(   r*   r)   r   r   r   r   r   r   r   r   r   r   r-   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r.   r/   rE   rF   rG   rH   r+   r   r   r   r@   rA   rB   rC   rD   kwargs	__class__s:                                                            e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/wavlm/configuration_wavlm.pyr   WavLMConfig.__init__   s   v 	s6s<frs&!2'>$X,,"&#6 '>$-J*'*4=='9$!2!2$#6 ,!2"4!2*",!2.$$8!&<#$8! !!"d&B&BBD$$%)E)EEDMM"d&B&BB&''Ec$JZJZF[E\ ]//243C3C/D.ERI  #5, 0#6 !2#6  *C&%:".L+*,#6 %:" #5!2 '#6 ,"4"4"C %9! X,!-0"4    c                 b    [         R                  " [        R                  U R                  S5      $ )N   )	functoolsreduceoperatormulr   )rI   s    rL   inputs_to_logits_ratio"WavLMConfig.inputs_to_logits_ratioL  s!    d.>.>BBrN   )5r%   rA   rB   r@   r1   r$   r/   r;   r9   r   r   r   r   r>   r?   r=   r-   r   r   r&   r'   r!   r#   r   r*   r    r)   r(   r6   r5   r3   r4   r2   r   rC   r"   r   r8   r7   r   r   r+   r   r   r:   rD   r<   rG   rE   rF   r.   r,   rH   )7    i      rX   i   gelu皙?rZ   rZ           rZ   rZ   g{Gz?gh㈵>grouprY   )   r]   r]   r]   r]   r]   r]   )      r_   r_   r_   r_   r_   )
   r   r   r   r   r_   r_   F      @  i   FTg?r`   r_   r[   r`   rc   r_   rZ   d      re   rZ   meanFFre   )r]   r]   r]   r]   i  )r^   r   r   rP   rP   )rP   r_   r   rP   rP   r]   P   r   rP   r_   Fr   r_   r   N)__name__
__module____qualname____firstlineno____doc__
model_typer   propertyrU   __static_attributes____classcell__)rK   s   @rL   r   r      s    aF J ! &4)* #&(""%'*!!$ +#%qI5V C CrN   r   )rl   rQ   rS   configuration_utilsr   utilsr   
get_loggerrh   loggerr   __all__r   rN   rL   <module>rv      sC        3  
		H	%sC" sCl	 /rN   