
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zViViT model configuration   )PretrainedConfig)loggingc                   T   ^  \ rS rSrSrSrSS/ SQSSS	S	S
SSSSSS4U 4S jjrSrU =r$ )VivitConfig   ad  
This is the configuration class to store the configuration of a [`VivitModel`]. It is used to instantiate a ViViT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ViViT
[google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    num_frames (`int`, *optional*, defaults to 32):
        The number of frames in each video.
    tubelet_size (`List[int]`, *optional*, defaults to `[2, 16, 16]`):
        The size (resolution) of each tubelet.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu_fast"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"`, `"gelu_fast"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the layer normalization layers.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether to add a bias to the queries, keys and values.

Example:

```python
>>> from transformers import VivitConfig, VivitModel

>>> # Initializing a ViViT google/vivit-b-16x2-kinetics400 style configuration
>>> configuration = VivitConfig()

>>> # Initializing a model (with random weights) from the google/vivit-b-16x2-kinetics400 style configuration
>>> model = VivitModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```vivit       )      r   r   i      i   	gelu_fastg        g{Gz?gư>Tc                    > XPl         X`l        Xpl        Xl        Xl        Xl        Xl        Xl        Xl        Xl	        X l
        X0l        X@l        Xl        [        TU ]<  " S0 UD6  g )N )hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
num_framestubelet_sizenum_channelsqkv_biassuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                   e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/vivit/configuration_vivit.pyr    VivitConfig.__init__R   se    $ '!2#6 !2$#6 ,H)!2,$$(( "6"    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   )	__name__
__module____qualname____firstlineno____doc__
model_typer    __static_attributes____classcell__)r#   s   @r$   r   r      sF    5n J  %("# "#r&   r   N)
r+   configuration_utilsr   utilsr   
get_loggerr'   loggerr   __all__r   r&   r$   <module>r4      s;      3  
		H	%\#" \#~ /r&   